Language Agent as Tool-use Decision Maker

Hongru WANG

https://hrwise-nlp.github.io/

The Chinese University of Hong Kong

6th July, 2025

Supervisor: Professor WONG Kam Fai William (CUHK)

Chairman: Professor YU Jeffrey Xu (CUHK)

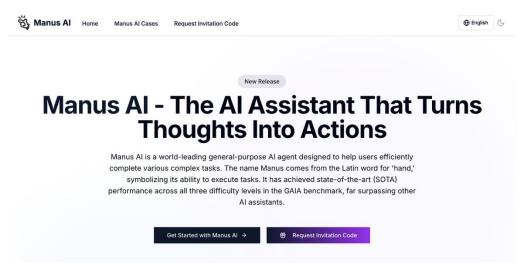
Committee Member: Professor WAI Hoi To (CUHK)

External Examiner: Professor LIU Zhiyuan (Tsinghua)

Overview

- □ Introduction
- Methods
 - □ Building Agents with *Internal Cognitive Tools*
 - □ Building Agents with *External Physical Tools*
 - Building Agents with Self-aware Tool Utilization
- Benchmarks
 - □ Benchmarking Tool Planning in *Single-turn* Interaction
 - □ Benchmarking Tool Utilization in *Multi-turn* Interaction
- Summary and Future Directions

Background



OpenAl Deep Research

OSWorld: Benchmarking Multimodal Agents for Open-Ended Tasks in Real Computer Environments

Tianbao Xie¹, Danyang Zhang¹, Jixuan Chen¹, Xiaochuan Li¹,

Siheng Zhao¹, Ruisheng Cao¹, Toh Jing Hua¹, Zhoujun Cheng¹, Dongchan Shin¹, Fangyu Lei¹, Yitao Liu¹,

Yiheng Xu¹, Shuyan Zhou³, Silvio Savarese², Caiming Xiong², Victor Zhong⁴, Tao Yu¹

¹The University of Hong Kong, ²Salesforce Research, ³Carnegie Mellon University, ⁴University of Waterloo

> Paper

Code

Doc

Data

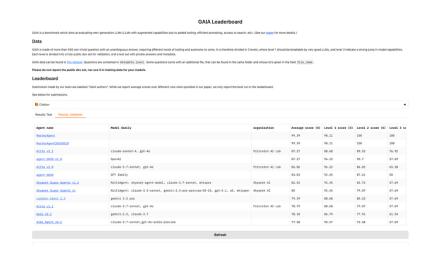
Data Viewer

C Slides

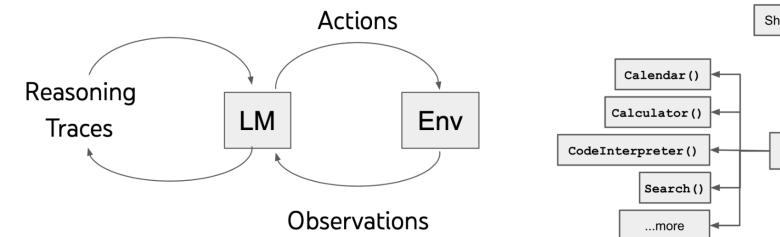
Twitter

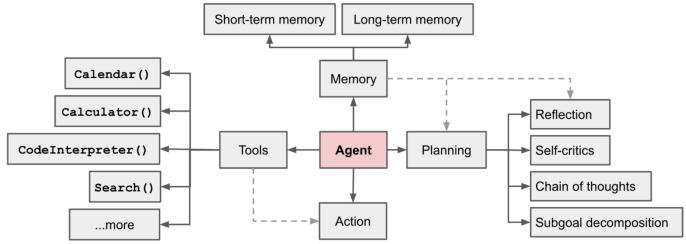
Discord

Computer-Using Agent



Background



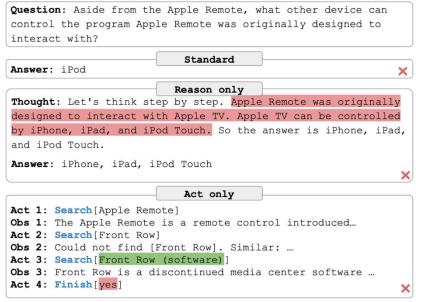


https://react-lm.github.io/

https://lilianweng.github.io/posts/2023-06-23-agent/

Agent = [Reasoning + Acting] * n

Background



```
ReAct
Thought 1: I need to search Apple Remote and find the program
it was originally designed to interact with.
Act 1: Search [Apple Remote]
Obs 1: The Apple Remote is a remote control introduced in
October 2005 by Apple ... originally designed to control the
Front Row media center program ...
Thought 2: Apple Remote was originally designed to control the
Front Row media center program. I need to search Front Row
next and find what other device can control it.
Act 2: Search[Front Row]
Obs 2: Could not find [Front Row]. Similar: ['Front Row Seat
to Earth', 'Front Row Motorsports', 'Front Row (software)', ...]
Thought 3: Front Row is not found. I need to search Front Row
Act 3: Search[Front Row (software)]
Obs 3: Front Row is a discontinued media center software ...
Thought 4: Front Row (software) is controlled by an Apple
Remote or the keyboard function keys. So the answer is
keyboard function keys.
Act 4: Finish[keyboard function keys]
```

Thought: The model's understanding about the current state

Act: external APIs to acquire external knowledge

Observation: feedback or results returned by external environment

ReAct in QA

Background

```
You are in the middle of a room. Looking quickly around you, you see a armchair 1, a cabinet 4, ... a cabinet 1, a drawer 5, ..., a drawer 1, a dresser 1, a garbagecan 1, a safe 1, a shelf 12, ..., a shelf 1, a sidetable 1, and a sofa 1.

Your task is to: put two keychain in safe.
```

```
(a) ReAct
Obs 16: You open the drawer 4. The drawer 4 is open. In it, you
see a keychain 3, and a watch 2.
Act 17: Think [Now I find the first keychain (3). Next, I need to
take it. I can find the second keychain (2) later in drawer 4. ]
Act 18: take keychain 3 from drawer 4
Obs 18: You pick up the keychain 3 from the drawer 4.
Act 22: put keychain 3 in/on safe 1
Obs 22: You put the keychain 3 in/on the safe 1.
Act 23: Think [Now I put the first keychain in safe. Next, I need
to find the second keychain. I can directly go to drawer 4. ]
Act 24: go to drawer 4
Obs 24: The drawer 4 is open. In it, you see a watch 2.
Act 25: Think [Now I find the second keychain (2). Next, I need
to take it.]
Act 26: take keychain 2 from drawer 4
Obs 26: Nothing happens.
```

```
(b) ReAct (Human Thought edit)
Obs 16: You open the drawer 4. The drawer 4 is open. In it, you see a
kevchain 3, and a watch 2.
Act 17: Think [Now I find the first keychain (3). Next, I need to take it. #
can find the second keychain (2) later in drawer 4. ]
Act 18: take keychain 3 from drawer 4
Obs 18: You pick up the keychain 3 from the drawer 4.
Act 22: put keychain 3 in/on safe 1
Obs 22: You put the keychain 3 in/on the safe 1.
Act 23: Think [Now I put the first keychain in safe. Next, I need to find
the second keychain, which is more likely to appear in dresser (1),
garbagecan (1), safe (1), sidetable (1), sofa (1), shelf (1-12) .]
Act 24: go to dresser 1
Obs 24: On the dresser 1, you see a box 1, a creditcard 1, a keychain 2, a
keychain 1, a laptop 1...
Act 25: Think [Now I find the second keychain (2). Next, I need to take
Act 26: take keychain 2 from dresser 1
Obs 26: You pick up the keychain 2 from the dresser 1.
Act 27: Think [Now I take the second keychain (2). Next, I need to put it
in/on safe 1.]
Act 28: go to safe 1
Obs 28: The safe 1 is open. In it, you see a keychain 3, a statue 2, and a
Act 29: put keychain 2 in/on safe 1
Obs 29: You put the keychain 2 in/on the safe 1.
```

Thought: The model's understanding about the current state

Act: external Actions to acquire external knowledge

Observation: feedback or results returned by external environment

ReAct in Embodied Env

Background

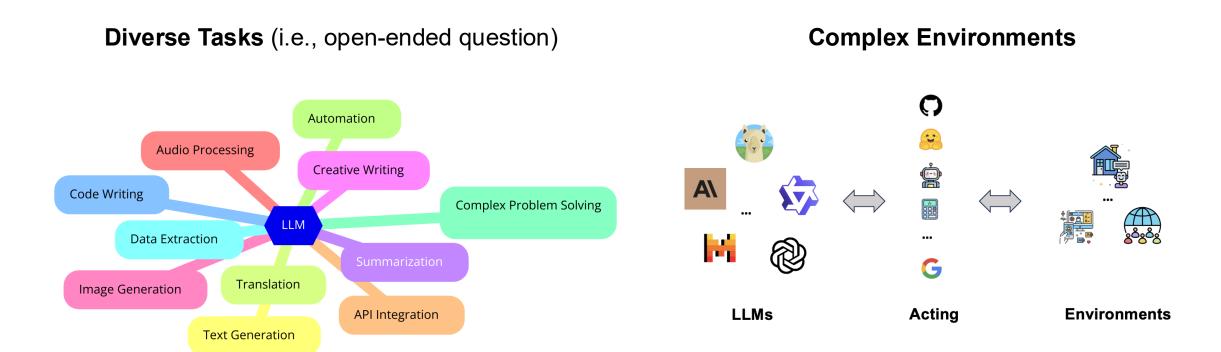
ReAct in Computer-using Env

Thought: The model's understanding about the current state

Act: external Actions to acquire external knowledge

Observation: feedback or results returned by external environment, the next page here

Challenge 1: Unified Framework for Reasoning / Acting



Challenge 2: Smart Autonomous Agents

- The **smart** agent must be aware what is capable to do, and what it can not do, and make decisions accordingly. "知之为知之,不知为不知,是知也"
- The autonomous agent is designed to minimize the number of actions a system needs to take in the real world to learn a task (Yann LeCun 2022)

Training Language Models to Reason Efficiently

Daman Arora

Carnegie Mellon University damana@andrew.cmu.edu

Andrea Zanette

Carnegie Mellon University zanette@cmu.edu

Acting Less is Reasoning More! Teaching Model to Act Efficiently

Hongru Wang^α, Cheng Qian^β, Wanjun Zhong^δ, Xiusi Chen^β, Jiahao Qiu^σ,
Shijue Huang^μ, Bowen Jin^β, Mengdi Wang^σ, Kam-Fai Wong^α, Heng Ji^β

^αThe Chinese University of Hong Kong, ^βUniversity of Illinois Urbana-Champaign

^σPrinceton University, ^δSun Yat-sen University, ^μHong Kong University of Science and Technology hrwang, kfwong@se.cuhk.edu.hk, hengji@illinois.edu

Challenge 3: Real-world Applications and Evaluations

Complex Environments

Siri with App Intents

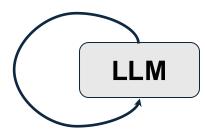
Siri is more natural, more personal, and more deeply integrated into the system. Apple Intelligence provides Siri with enhanced action capabilities, and developers can take advantage of predefined and pretrained App Intents across a range of domains to not only give Siri the ability to take actions in your app, but to make your app's actions more discoverable in places like Spotlight, the Shortcuts app, Control Center, and more. SiriKit adopters will benefit from Siri's enhanced conversational capabilities with no additional work. And with App Entitles, Siri can understand content from your app and provide users with information from your app from anywhere in the system.

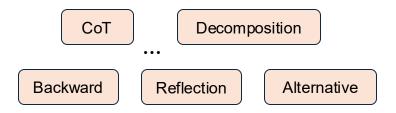
Bring your app to Siri (b)
What's new in App Intents (b)

Complex Humans

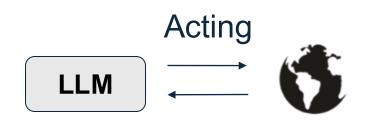
Apple intelligence is not only a technology, but also represents new ways of interaction.

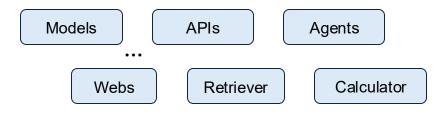
Reasoning vs Acting vs Planning





Cognitive mechanism / functions from Cognitive Science

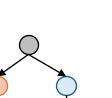




Physical Tools / Actions

Planning

Reason or Act



Decision-making Planning

Reasoning vs Acting vs Planning

reasoning == acting

If reasoning == acting [Yao et al, ...]

To reason and act is the same thing

翻译帖子

下午10:56 · 24/6/24 来自 Earth · 865 次查看

Thinking, or reasoning, is a **strange** kind of action

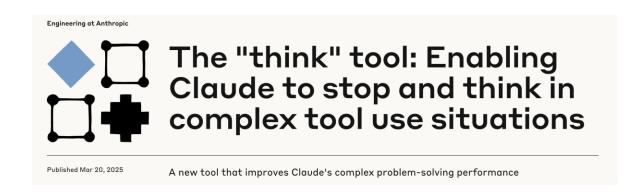
--- The Second Half, Shunyu Yao

https://ysymyth.github.io/The-Second-Half/

Reasoning vs Acting vs Planning


```
reasoning == acting
```


If reasoning == acting [Yao et al, ...]



https://www.anthropic.com/engineering/claude-think-tool

Method **Benchmarks** Introduction Summary Future Work

Reasoning vs Acting vs Planning

reasoning == acting ?

If reasoning == acting [Yao et al, ...]

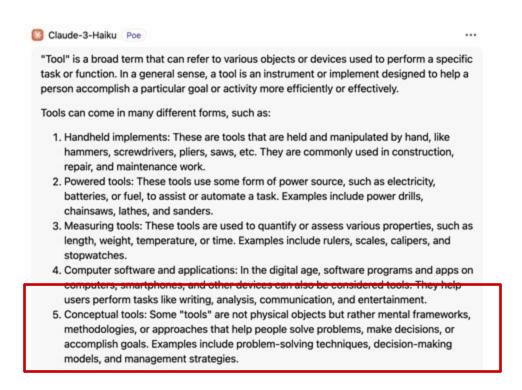
then how should we viem them in an unified manner?

Reasoning and Acting are both Tools

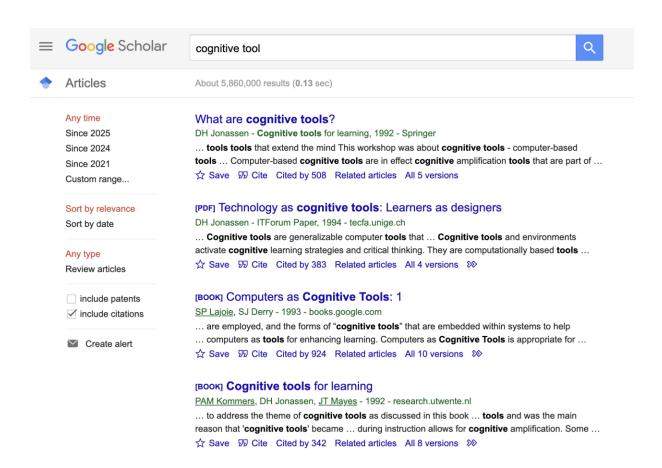
else:

what's real difference between reasoning and acting?

What's Tool?



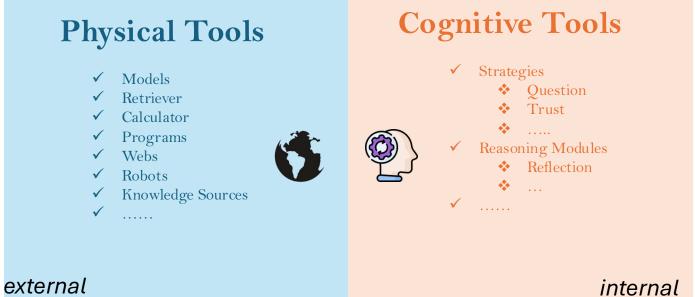
Answer from LLMs

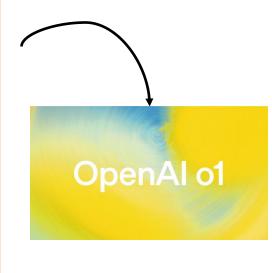


Answer from Scholars

Unification of Reasoning and Acting

Tool is defined as object that can extend an individual's ability to modify features of the surrounding environment or help them accomplish a particular task in general. It can be internal cognitive/conceptual tools (i.e., reasoning) and external physical tools (i.e., acting).





Reasoning ~= Acting (in) Tools

- Internal cognitive/conceptual tool refer to specifies an internal cognitive mechanisms that
 aids systematic or investigative thought, to retrieve internal knowledge of agent about current
 state (e.g, internal world model).
- **External physical tool** refer to external modules that are invoked by a rule or a specific token and whose outputs are incorporated into the context of agent (*e.g.*, *external world model*).

Essence of Tool

- **Useful:** A tool must effectively complete one or multiple tasks. It typically receives inputs and produces outputs.
- On-demand: A tool must be used as needed, meaning it is invoked based on the current state.

Some Typical Tools

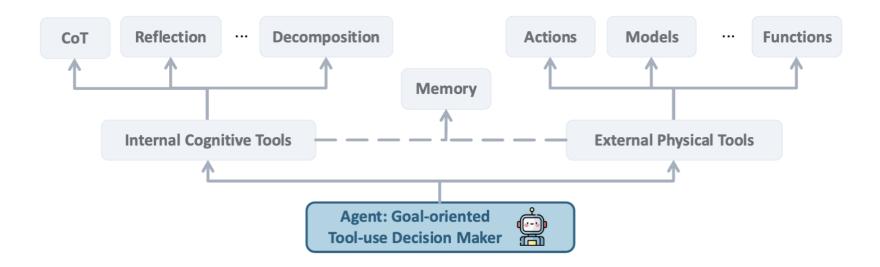
Useful **On-demand** TO COT OR NOT TO COT? CHAIN-OF-THOUGHT HELPS MAINLY ON MATH AND SYMBOLIC REASONING Zayne Sprague♠, Fangcong Yin♠, Juan Diego Rodriguez♠, Dongwei Jiang♦, Chain-of-thoughts (CoT) Manya Wadhwa, Prasann Singhal, Xinyu Zhao, Xi Ye[♥], Kyle Mahowald[♠], Greg Durrett[♠] Reflection [♠]The University of Texas at Austin, [♦]Johns Hopkins University, [♥]Princeton University Decomposition internal cognitive tools . . . **User Instruction** Search for a locomotive departing from Portland, OR on the 2nd of this month to Vancouver, BC, and then search for a residence in **APIs** /ancouver for two people with a rating of 4.2 or higher. O Visible APPs with APIs **Actions** Search Engine **Seek Human Help** from, total, class, ... = findtrains (date_of_journey = 2019-03-02, *from* = Portland, *to* = Vancouver) external physical tools . . . where_to, address, ... = searchhouse (number_of_adults = 2, rating = 4.2, where to = Vancouver)

These tools effectively address inherent limitations of LLMs, such as outdated information, while also expanding the capabilities to interact with the external environment.

AppBench

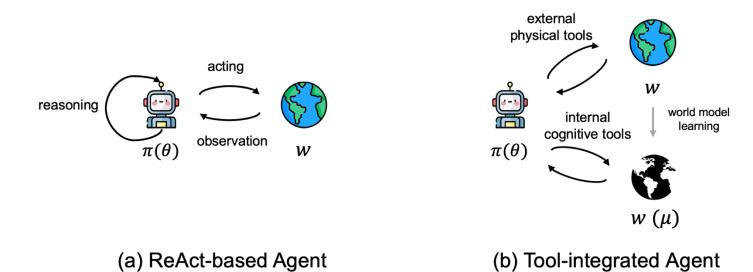
Tool-integrated Agents

❖ An agent is an entity that coordinates internal cognitive tools (e.g., reflection) and external physical tools (e.g., function callings) to acquire knowledge in order to achieve a specific goal.



Tool-integrated Agents

- ❖ An agent is an entity that coordinates internal cognitive tools (e.g., reflection) and external physical tools (e.g., function callings) to acquire knowledge in order to achieve a specific goal.
 - Unified Format: $\tau = (t_1, k_1, t_2, k_2, ..., t_n, k_n)$
 - t_n , k_n stands for tool call and returned knowledge at n_{th} step. The tool could be either internal or external.



Tool-integrated Agents

❖ An agent is an entity that coordinates internal cognitive tools (e.g., reflection) and external physical tools (e.g., function callings) to acquire knowledge in order to achieve a specific goal.

Flexible and Robust

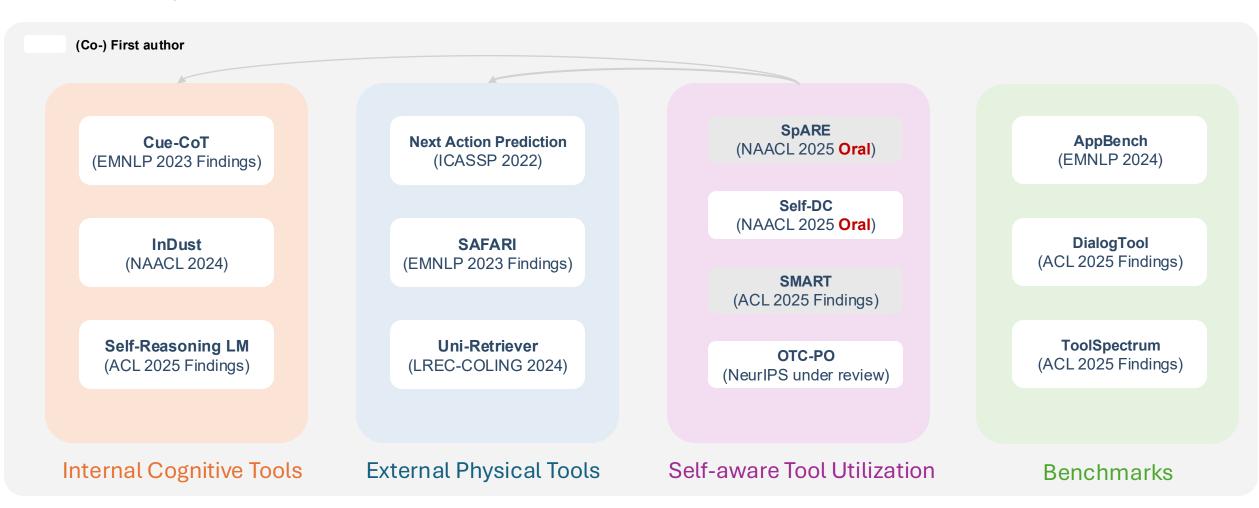
- It degrade to previous ReAct paradigm if we consider the internal tools and internal knowledge as whole reasoning part, then it becomes $(r_1, t_1, k_1, ..., r_n, t_n, k_n)$ here t_n, k_n only stands for external part.
- If we solely consider internal tools, it is proved that simply outcome-based reward can trigger various tool utilization such as reflection and decomposition to solve the problem in Large Reasoning Models (i.e., DeepSeek-R1). Alternatively, simply outcome-based reward also trigger various external tool utilization as evidenced in recent studies (i.e., Search-R1, ToRL, OTC-PO).

Tool-integrated Agents

- ❖ An agent is an entity that coordinates internal cognitive tools (e.g., reflection) and external physical tools (e.g., function callings) to acquire knowledge in order to achieve a specific goal.
 - Potential Next Scaling Law
 - Next Tool Prediction: Just as next-token prediction enables LLMs to learn a compressed representation of the world from text, next-tool prediction allows agents to learn procedural knowledge through interaction.

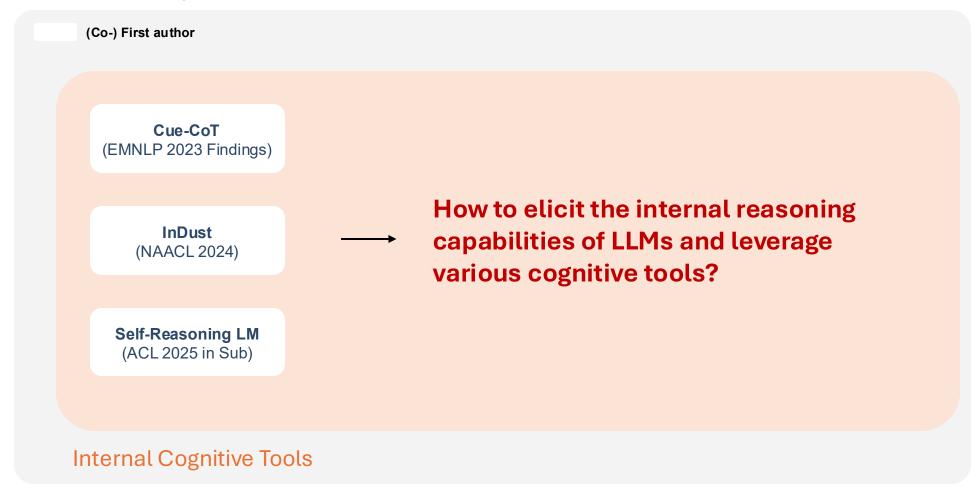
Tool-integrated Agents

ROADMAP: Building Agent with Self-aware Tool Utilization with both Internal Cognitive Tools and External Physical Tools



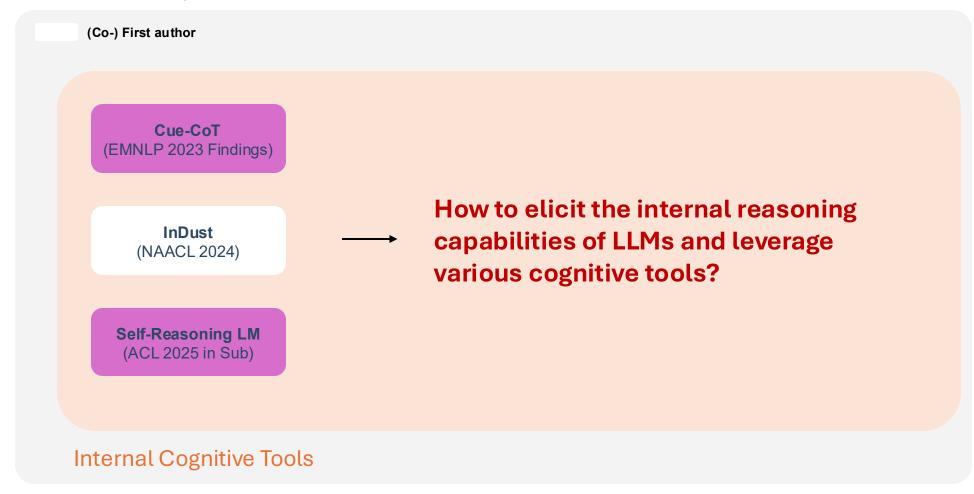
Tool-integrated Agents

ROADMAP: Building Agent with Self-aware Tool Utilization with both Internal Cognitive Tools and External Physical Tools



Tool-integrated Agents

ROADMAP: Building Agent with Self-aware Tool Utilization with both Internal Cognitive Tools and External Physical Tools



Introduction Benchmarks Future Work Summarv Method

Chain-of-Thoughts (CoT)

Standard Prompting

Model Input

Q: Roger has 5 tennis balls. He buys 2 more cans of tennis balls. Each can has 3 tennis balls. How many tennis balls does he have now?

A: The answer is 11.

Q: The cafeteria had 23 apples. If they used 20 to make lunch and bought 6 more, how many apples do they have?

Model Output

A: The answer is 27.

Chain-of-Thought Prompting

Model Input

Q: Roger has 5 tennis balls. He buys 2 more cans of tennis balls. Each can has 3 tennis balls. How many tennis balls does he have now?

A: Roger started with 5 balls. 2 cans of 3 tennis balls each is 6 tennis balls. 5 + 6 = 11. The answer is 11.

Q: The cafeteria had 23 apples. If they used 20 to make lunch and bought 6 more, how many apples do they have?

Model Output

A: The cafeteria had 23 apples originally. They used 20 to make lunch. So they had 23 - 20 = 3. They bought 6 more apples, so they have 3 + 6 = 9. The answer is 9. 🗸

CoT has proved to be an effective mean to elicit reasoning capabilities of LLMs in certain tasks.

Introduction **Benchmarks Future Work** Summary Method

Chain-of-Cues

Dialogue Context

"What are some things you think you should know when having a baby, but no one tells you?"

"1. Prenatal care tips, such as maintaining a healthy diet, reducing alcohol consumption, ...

- 2. Possible emergencies during childbirth, such as fetal growth restriction, ...
- 3. Postpartum care for the mother, such as breastfeeding, ...

4...."

"What are some things that can help me prepare for childbirth?"

Linguistic Cues

anxiety

Personality

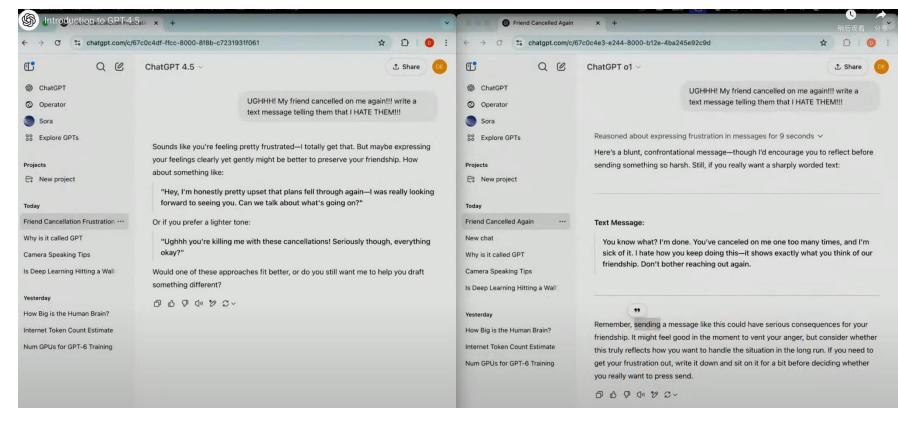
Psychology

pay close attention to details and approach with thoughtful consideration, ...

feeling uncertain and anxious about the future, need some more specific advice, ...

Lots of linguistic cues underlying dialogue context are effective means as intermediate reasoning results (Chain-of-Cues) to generate more personalized and acceptful responses.

Chain-of-Cues



GPT-4.5

Lots of internal cognitive capabilities

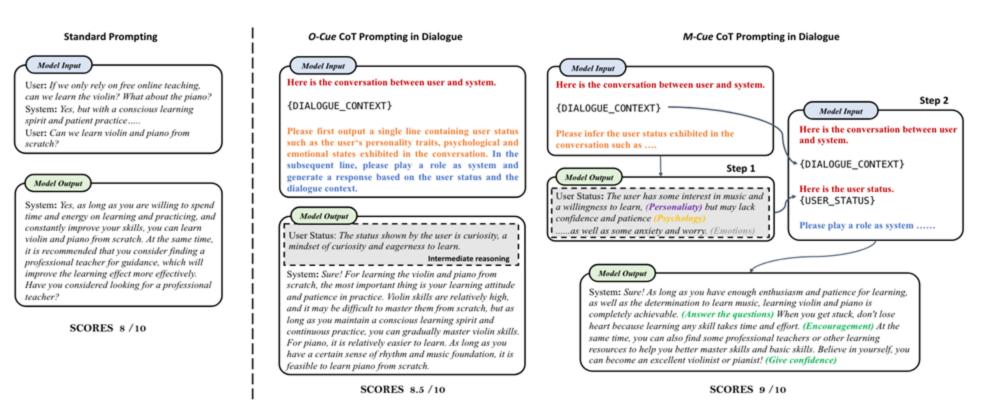
Emotional intelligence, More natural / human, Creativity, Warm

• • • •

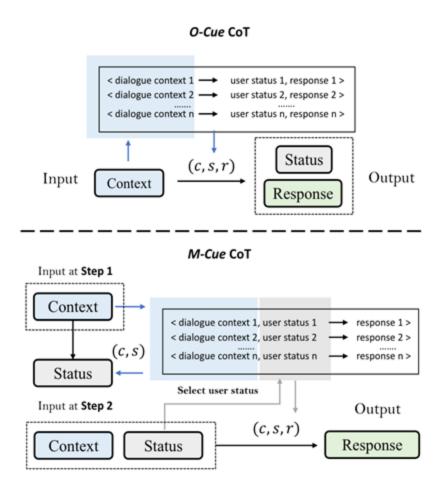
Introduction to GPT-4.5: https://youtu.be/cfRYp0nltZ8

Chain-of-Cues – Two Reasoning Variants

- O-Cue: simply generate everything in one step, like Chain-of-Thoughts;
- M-Cue: generate all reasoning step by step, two major advantages: 1) reduce context length, and 2) utilize intermediate reasoning for in-context learning.



Chain-of-Cues – In-context Learning



O-Cue

select (c, s, r) according to dialogue context to infer cues and response together.

M-Cue

select (c, s) according to dialogue context to infer status, and then select demonstrations (c, s, r) according to inferred cues

Chain-of-Cues - Results

Model	Prompt	Helpfulness			Acceptability		
		Zhihu	D4	PsyQA	Zhihu	D4	PsyQA
Zero-shot Setting							
BELLE	O-Cue	67.40	76.34	69.31	55.82	52.50	53.43
	М-Сие	81.54	71.60	79.25	60.23	72.41	73.65
CHATGLM	O-Cue	48.29	56.68	33.00	32.39	39.19	31.34
	М-Сие	85.02	72.10	83.57	66.67	51.27	55.40
CHATGPT	O-Cue	67.91	50.40	61.90	53.14	52.38	58.15
	М-Сие	95.57	87.88	90.34	65.22	61.08	56.12
One-shot Setting							
random selection							
BELLE	O-Cue	64.31	50.53	65.15	53.35	40.07	53.81
	М-Сие	83.30	<u>69.59</u>	73.81	73.61	<u>56.14</u>	61.90
CHATGLM	O-Cue	-	-	-	-	-	-
	М-Сие	90.28	75.10	91.85	74.55	54.03	64.75
CHATGPT	O-Cue	76.47	51.94	65.44	63.86	50.47	56.03
	М-Сие	91.60	86.67	88.96	76.83	58.19	61.41
top-1 selection							
BELLE	O-Cue	63.77	57.51	69.92	54.93	41.02	55.87
	М-Сие	82.77	<u>69.94</u>	73.99	74.32	<u>54.38</u>	62.24
CHATGLM	O-Cue	-	-	-	-	-	-
	М-Сие	89.25	77.26	91.77	73.43	57.17	58.74
CHATGPT	O-Cue	76.86	50.93	55.85	59.63	52.02	57.58
	М-Сие	93.19	88.84	91.77	78.46	56.84	59.48

As win rate > 50%, it means the responses are better than standard prompting. O-Cue and M-Cue both are better than Standard Prompting, and M-Cue is more effective and robust

⊐ LLMs

- BELLE: low long-context understanding ability; middle instruction-following ability
- ChatGLM: middle long-context understanding ability; low instructionfollowing ability
- **-**
- ChatGPT: both high

Self-Reasoning Language Model (SRLM)

The model need to understand role of each tool and composite them selectively to solve the problem.

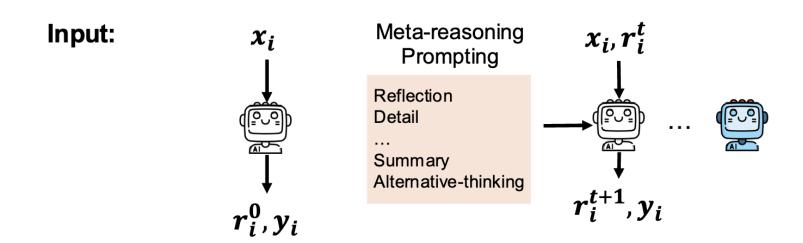
What if we want to dynamically call multiple internal cognitive tools on demand to solve general problems?

Outcome-based RL (e.g., DeepSeek-R1) is **not appliable**

Self-Reasoning Language Model (SRLM)

Output: Shorter Reasoning + Answer

- The key lies in generating and obtaining high-quality and longer CoT traces.
 - With longer CoTs during inference, these LLMs could explore more creative and diverse reasoning rationales while assembling various meta-reasoning skills observed in human cognition, i.e., decomposition and reflection.



Longer Reasoning + Answer

Self-Reasoning Language Model (SRLM)

■ We introduce **Self-Reasoning Language Model** (SRLM), where **the model itself can synthesize longer CoT data and iteratively improve performance through self-training**. It is capable to act as both: 1) a response generation model (i.e., *learn to reason*); and 2) reasoning models to refine its own reasoning rationales (i.e., *how to reason*). It is noted that we **do not do continual training**.

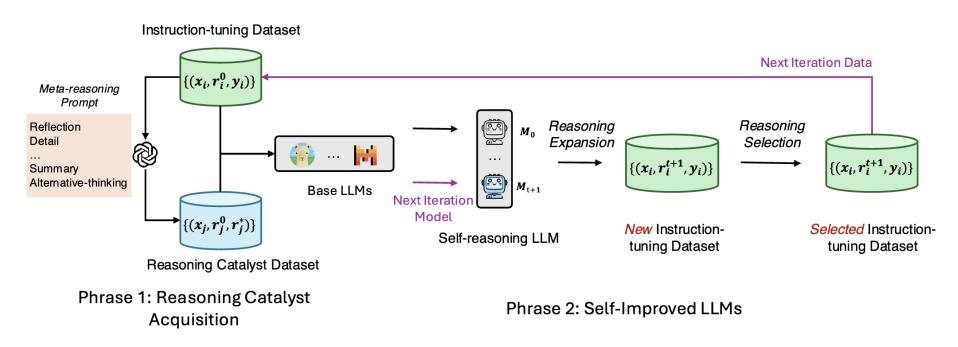


Figure 2: The framework of our proposed Self-Reasoning Language Models, which consists of two phrases.

Phrase-1: Reasoning Catalyst Acquisition

"It's better to teach a man to fish than to give him fish."

授人以鱼不如授人以渔

You are an expert at meta reasoning theory from cognitive science. Given the question, corresponding summarized reasoning and answer, you can always uncover hidden or unspoken reasoning, even when it isn't explicitly stated.

You need to add any missing reasoning thoughts that you think it is helpful or may occurs to understand and solve this question based on given summarized reasoning result. Your new reasoning should be more comprehensive, detailed and clear. Your answer should follow the format like <thoughts> your new reasoning here </thoughts>

Inside <thoughts> </thoughts>, you need to explicitly indicate which meta reasoning skill is used, some of them are shown below, but note you can use anything else if you think it is helpful or it naturally occurs when you solve this question.

<decomposition>: breaking down a complex problem into smaller, more manageable parts. Making sure that you also provide answers for all decomposed problems in this section. You can decompose iterativelly but should not contain same problem or exceed the max iteration depth which is three.

dackward>: starting with the desired observations at any previous reasoning step and working backward to identify the new reasoning directions.

<detail>: any details including but not limited to logic and reasons for your reasoning in this way, you are encouraged to add this at every unclear or unnatural reasoning step.

<summary>: summarize your reasoning to help future thinking.

<alternatives>: directly thinking in other ways, try to explore different solutions as much as possible to solve given problem.

<reflection>: you are encouraged to regularly reflect on your past reasoning in current response at various levels of detail, from sentence down to individual word. This will help you better understand and think through problems. It's okay to make mistakes; use them as opportunities to learn and improve.

<analogy>: you are encouraged to regularly consider other analogous problems with the problem you've encountered at various reasoning steps, along with their solutions. Reference existing theories or methods that guided your approach to solving these problems. These similar problems can be at various levels of detail - from larger overarching issues down to smaller sub-problems you encountered along the way. The key is to demonstrate a diverse range of problems and solutions, to show how you have approached and resolved challenges that are analogous to the current situation.

<check>: consider different edge cases or test cases carefully.

<other>: other meta reasoning skills you think is helpful or worthy to try to solve the task.

Notice:

- 1. All tags must be properly invoked and closed, using the format like <reflection> and </reflection>.
- 2. You should always use first-person perspective.
- 3. You can add any new meta reasoning skill at any positions except <reflection>. Note <reflection> can not be invoked without any reasoning in current response and it can be invoked at any positions when you already have some reasoning results.
- 4. You cannot change the original reasoning. However, if you identify any errors or improvements in the reasoning, you can add new reasoning steps using above meta-reasoning skills afterwards to correct or clarify the path, ensuring a better understanding and solution.
- 5. You can apply the same reasoning skills multiple times or use different skills simultaneously.
- 6. Your answer should start with <thoughts>, and end with </thoughts>.

Defining lots of reasoning modules as internal cognitive tools

CoT: Let's think step by step

Reflection:

Critic:

$$r_i^* = \mathcal{M}_{meta}(x_j, r_i^0)$$

Phrase 2: Self-Improved LLMs

- Iterative Reasoning Expansion: Just feed instructiontuning dataset in last iteration into SRLM;
- Iterative Reasoning Selection: Choose the better one from current sample and previous sample.

Type equation here.



$$L = -\log p(r, y|x) - \log p(r^*|x, r)$$

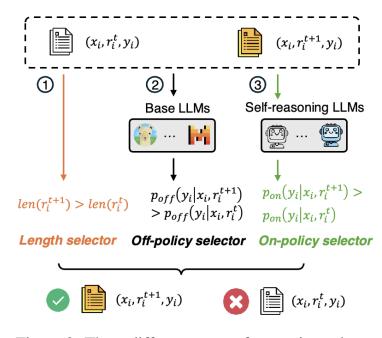
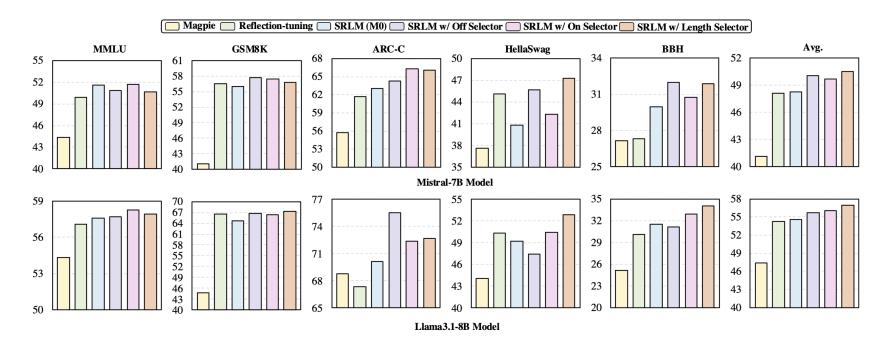


Figure 3: Three different types of reasoning selectors.

Experimental Results

- Incorporating additional reasoning expansion samples into the instruction-tuning dataset acts as a catalyst, leading to improved performance.
 SRLM (M0) vs Reflection-tuning and Magpie
- Small Self-Reasoning Language Models can generate high-quality rationales iteratively. It is evident that SRLM with different selectors at various iterations all leads to improvement compared with the initial SRLM (M0).
- All types of selectors outperform SRLM (M0), with the on-policy selector excelling in MMLU, while the length selector performs better on HellaSwag and BBH.



Analysis

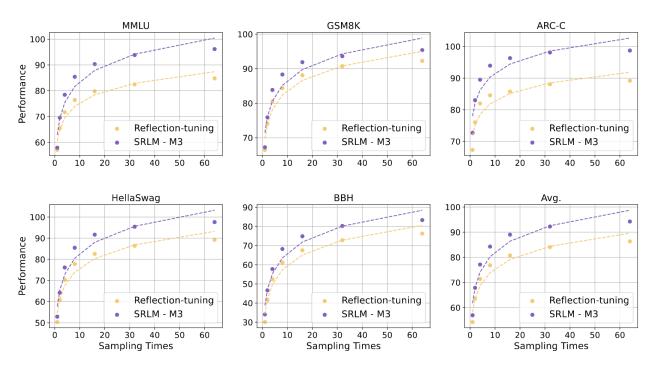
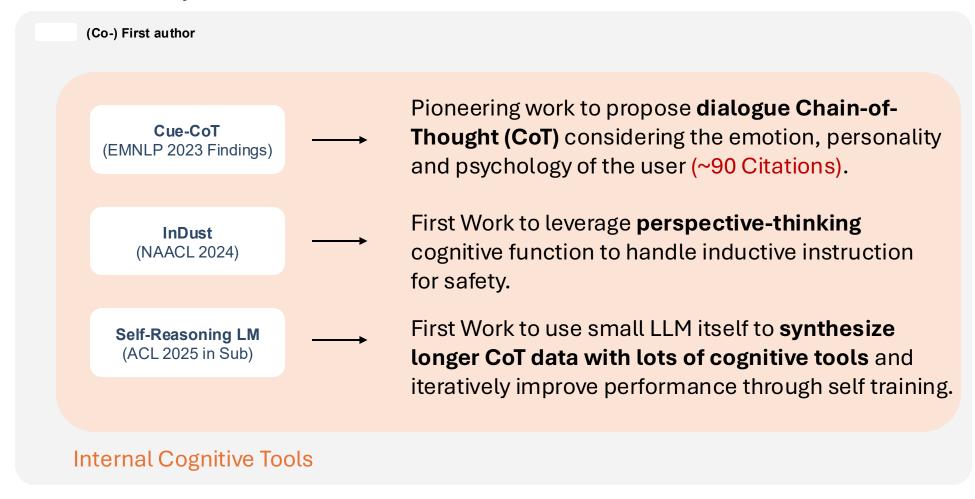
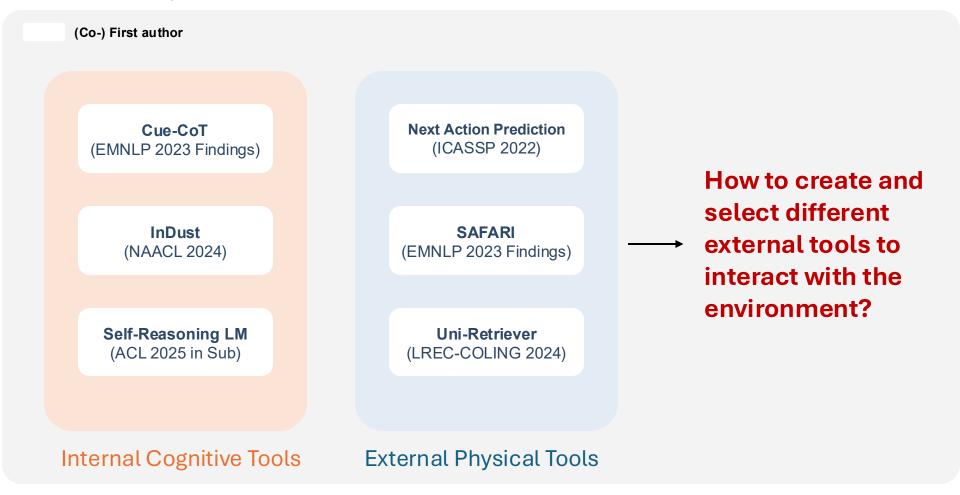
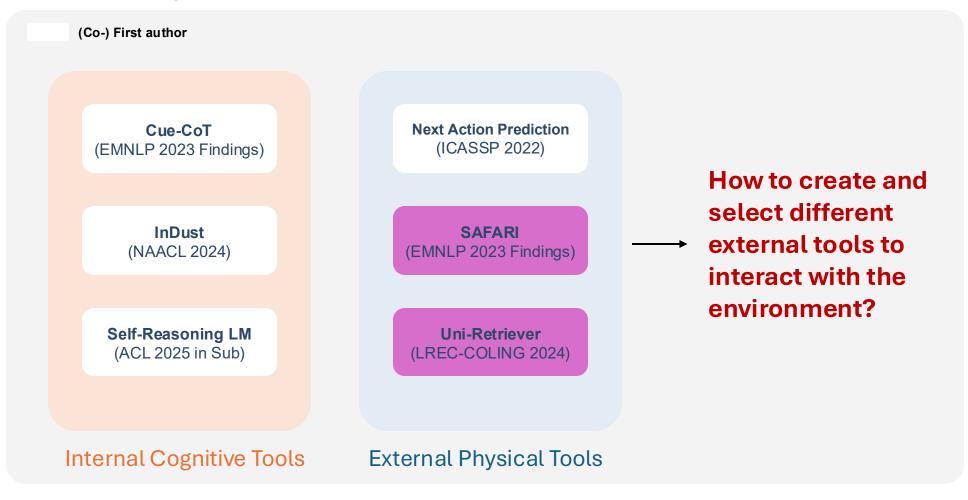


Figure 5: The performance of the baseline and our proposed SRLM (\mathcal{M}_3 with length selector) different sampling times ranging from 1 to 64 (i.e., 1, 2, 4, 8, 16, 32, 64) on five various benchmarks and the Avg. performance.

It is believed that our proposed SRLM can explore more depth, diverse and creative reasoning paths toward the final correct solution, revealing its promising potential.







SAFARI – External Physical Tools

Dialogue Agent requires access to various external knowledge sources to deliver reliable, informative, personalized, and helpful response.

Research Question 1: How to build universal retriever to retrieve various evidences from different knowledge sources?

Research Question 2: How to decide which knowledge source to retrieve and plan call order of multiple knowledge sources if required?

RQ1: Tool Creation – Universal Retriever

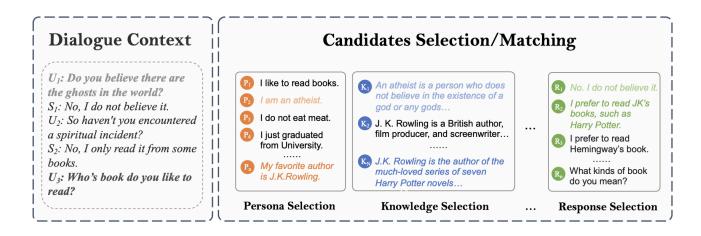
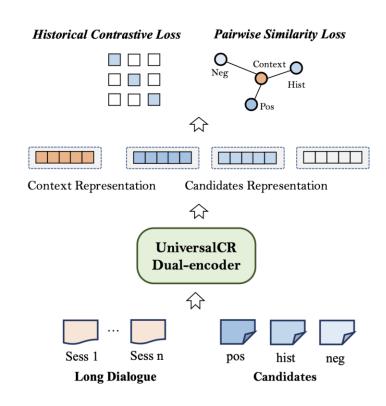


Figure 1: Different candidates selection tasks in a dialogue system: persona selection, knowledge selection, and response selection task. According to u_3 in the dialogue context, it is obvious to select p_n , k_n , and r_2 as target persona, knowledge, and response for the next turn respectively, while the p_2 , k_1 , and r_1 are historical selected persona, knowledge and response for historical turn u_1 .

- Hard negative mining: Using historical selected candidates as semi-hard negative samples
- Two loss constraints: historical contrastive loss and pairwise similarity loss



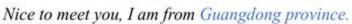
Our proposed **UniCR** framework based on dual-encoder.

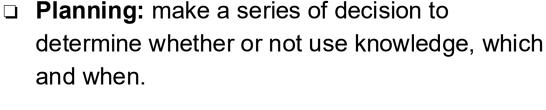
Introduction **Benchmarks Future Work** Summary Method

RQ2: Knowledge Source as Tools

Hello, I am from Anhui province, which province are u from?

非常高兴认识你,我是广东人。





$$\mathcal{M}: \mathbf{c} \to K_i, K_j, ..., K_n \quad or \quad \text{NULL}, \quad (1)$$

Retrieval: retrieve *top-n* results from local databases according to the decided used source knowledge

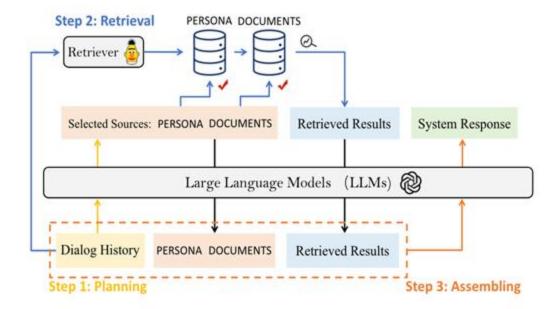
$$\mathcal{R}: K_i, K_j, ..., K_n \to k_i^j, ..., k_n^m$$
 (2)

Assembling: incorporate all retrieved middle results into the final response generation

Three Sub-tasks

RQ2: Knowledge Source as Tools

Two Learning Methods



Learn from Data

There are different knowledge bases storing relevant information:

K_1: {K_1_DESC} K_2: {K_2_DESC}

.....

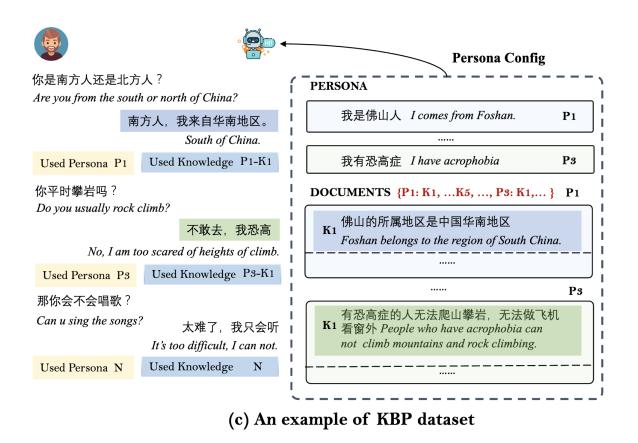
There exists a dependency between these knowledge bases. {DEPENDENCY_DESC}

Here is the dialogue between the user and the system: {DI-ALOGUE}

Based on the user's last question, please determine if it requires invoking the corresponding knowledge base. If the invocation is necessary, output the names of the knowledge bases in the order they should be invoked. If no invocation is needed, output **NULL**.

Learn from In-context Demonstrations

RQ2: Knowledge Source as Tools



- Dataset: KBP, three different knowledge sources
 - Do not need any external knowledge NULL
 - Only require PERSONA source of knowledge PERSONA
 - Require both PERSONA and DOCUMENT sources of knowledge PERSONA
 DOCUMENT
- Evaluation: Planning, Retrieval, Generation
- Methods:
 - Supervised finetuning
 - Prompting-based method

SAFARI -- Results

Model	NULL	Persona	Both							
Supervised										
BELLE-LLAMA-7B-2M	42.67 (194)	14.08 (17)	83.77 (1018)							
CHATGLM-6B	47.10 (129)	31.96 (69)	86.59 (1031)							
Unsupervised										
Zero-shot										
BELLE-LLAMA-7B-2M	28.55 (940)	8.94 (54)	32.47 (235)							
CHATGLM-6B	25.60 (1225)	0.0(0)	0.43 (4)							
CHATGPT	11.45 (116)	20.67 (233)	74.88 (880)							
In-context										
BELLE-LLAMA-7B-2M	9.22 (36)	Ī 18.21 (1193) ¯	0.0(0)							
CHATGLM-6B	25.67 (1190)	1.49 (9)	4.62 (30)							
CHATGPT	27.95 (699)	23.14 (238)	41.98 (292)							

Table 4: The F1 of different decisions in **Planning** of different LLMs under supervised/unsupervised settings. We also report the frequency of different decisions in the bracket. There are 181 NULL, 125 PERSONA and 923 PERSONA, and DOCUMENTS in the ground planning.

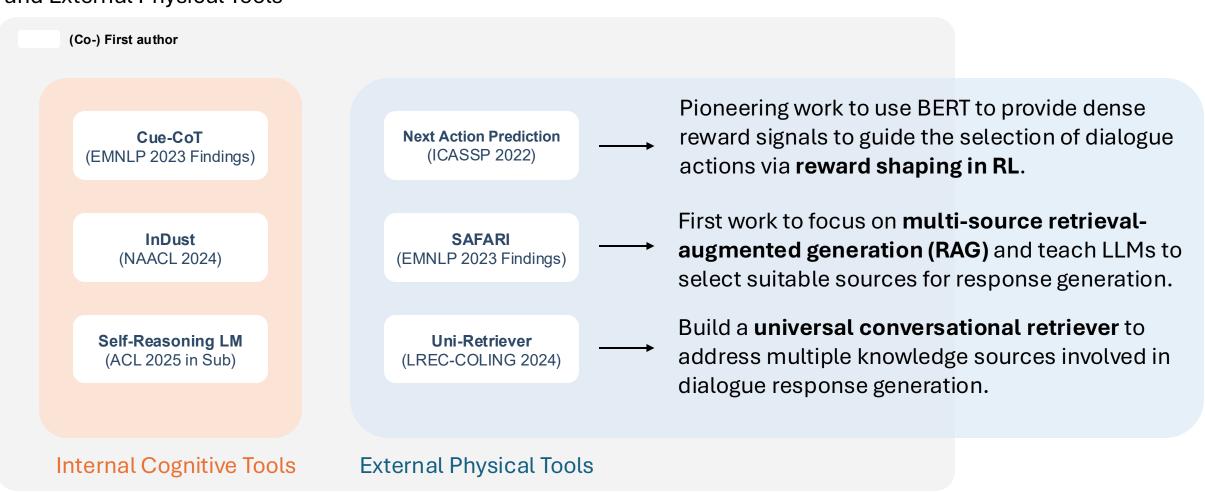
Model	BLEU1	Rouge-L	P.C	K.C						
Supervised Setting										
BELLE-LLAMA-7B-2M	30.48	34.61	75.34	46.62						
CHATGLM-6B	23.81	26.70	76.99	42.39						
Unsupervised Setting										
Zero-shot										
BELLE-LLAMA-7B-2M	11.84	19.24	30.59	27.34						
CHATGLM-6B	6.18	14.50	14.73	24.73						
CHATGPT	12.06	24.44	73.47	38.00						
In-context										
BELLE-LLAMA-7B-2M	19.51	22.25	72.98	24.89						
CHATGLM-6B	13.74	19.69	16.92	24.89						
CHATGPT	16.03	25.62	46.38	35.56						

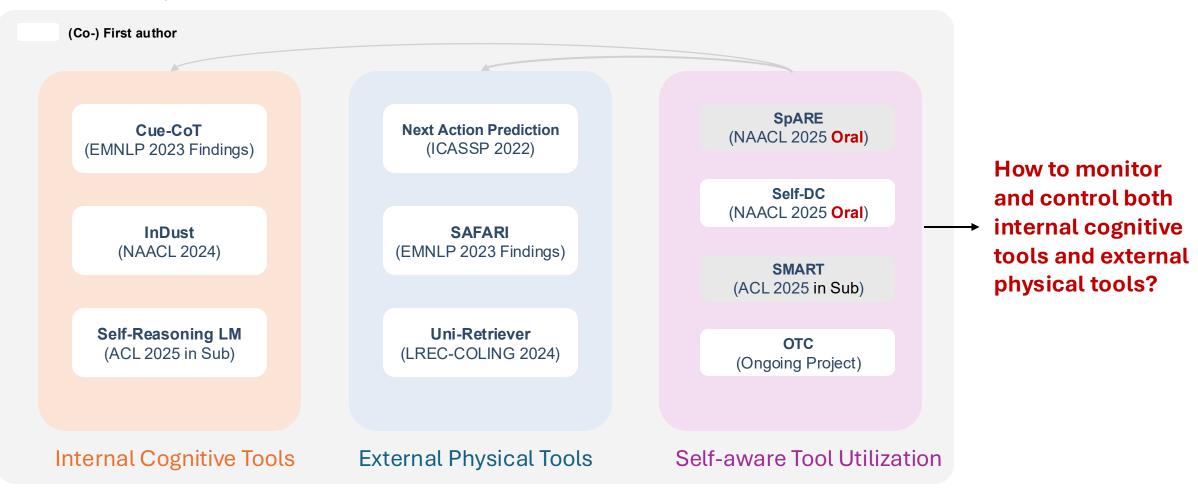
Table 6: The performance of **Assembling** under supervised/unsupervised settings.

Model	BLEU1	RougeL	P.C	K.C
CHATGLM-6B	23.81	26.70	76.99	42.39
+ Ground Planning	24.29	27.01	86.16	57.12
+ Ground Retrieval	25.86	29.15	79.52	53.95
+ Ground P & R	25.71	29.43	90.56	72.99
- Dependency	23.32	25.53	75.67	38.49
- Documents	23.06	<u>25.34</u>	75.91	36.53
- Planning*	23.51	25.98	72.90	24.89
- Planning**	23.69	26.81	<u>71.60</u>	34.91

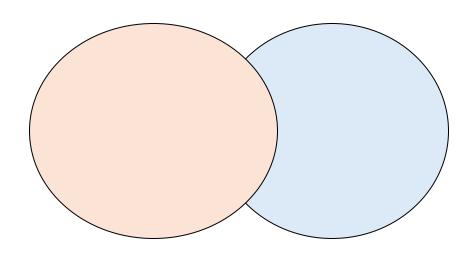
Table 7: Ablation study on the impact of different steps and modules in SAFARI.

- Difficulty level of tasks: planning > retrieval > assembling. In-context learning does not help a lot at planning.
- Complex relationship between different knowledge sources (i.e., using the user profile to look up the movie database) remains an open challenge. Simply merge them all in one knowledge source lead to worse performance.





Can we better monitor and control LLMs' behaviors?



Internal Cognitive Tools

External Physical Tools

Tool Planning: Different tools serve different purposes and are designed to produce distinct types of outputs.

Tool Management: When multiple tools have similar functionality, the choice of which tool to use depends on several factors: personalization, efficiency, and practical limitations.

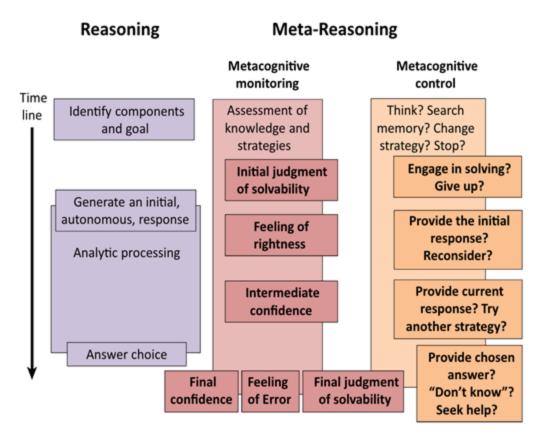
Tool Conflicts: When the information or results from different tools contradicts, it can be challenging to determine which source to trust.

All of these necessitate monitoring and control of LLMs' behaviors.

Introduction **Benchmarks Future Work** Summary Method

Let's recall how human call tools...

Natural Mind



Trends in Cognitive Sciences

Artificial Mind

Monitoring

Judgement of solvability Intermediate confidence Reward model Uncertainty estimation

Control

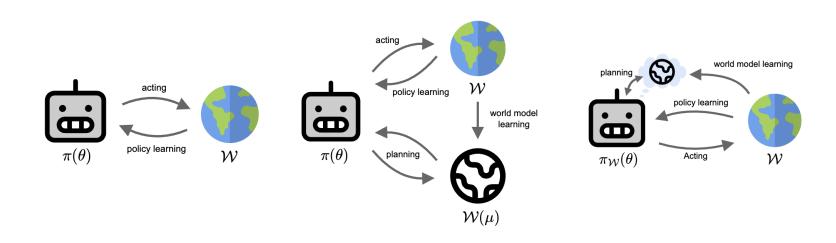
Cognitive tools Physical tools Tool planning

Monitoring and Control – Meta-Reasoning Theory

❖ We want the agent call internal tools when they know certain knowledge, while only invoke external tools when they do not know certain knowledge.

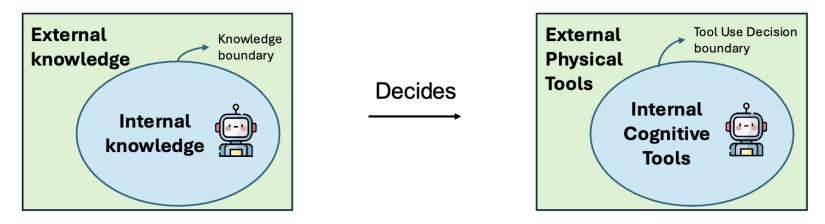
"The autonomous machine intelligence is designed to **minimize the number of actions** a system needs to take in the real world to learn a task. It does so by learning a world model that capture as much knowledge about the world as possible without taking actions in the world."

--- Yann Lecun



Monitoring and Control – Meta-Reasoning Theory

We hope that LLMs can utilize internal cognitive tools to gain internal knowledge while only call external tools to gain external knowledge during problem-solving processing. The challenge here is self-aware tool utilization



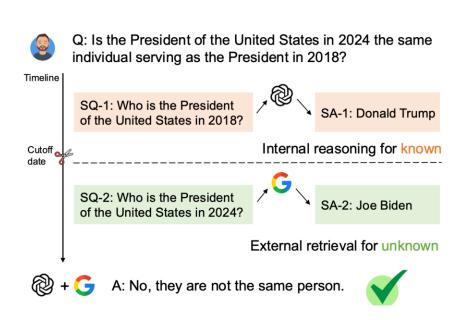
Monitor: Self-aware Knowledge Boundary

Control: Self-aware Tool Utilization

Self-DC: When to Reason and When to Act?

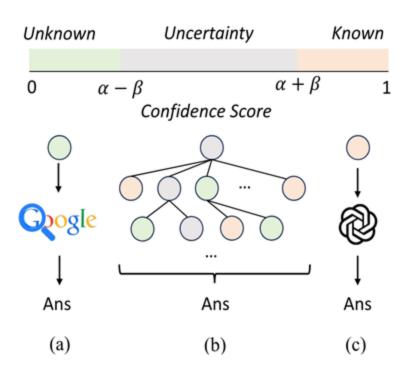
Given a LLM, its knowledge boundary is fixed at time *t*.

Thus, given one LLM and one question, there are four cases.



- Single Known. The question contains no sub-questions and can be solved using internal knowledge of LLMs, such as with the generate-then-read method.
- Single Unknown. The question contains no sub-questions and can only be solved using external knowledge, such as with the retrievethen-read method.
- Compositional Known. The question contains several sub-questions, and each sub-question is Single Known.
- *Compositional Unknown*. The question contains several sub-questions, and at least one sub-question is *Single Unknown*.

Self-DC: When to Reason and When to Act?



Our proposed **Self-DC** framework, including a) retrievethen-read for unknown questions, b) decompose-andcombination for uncertain questions; and c) generatethen-read for known questions. Since different LLMs have different knowledge boundaries, we design a two-step prompting strategy:

Step1: knowledge boundary assessment for different LLMs, i.e., uncertainty estimation such as prompting LLMs to generate confidence scores or multiple sampling. (*monitor*)

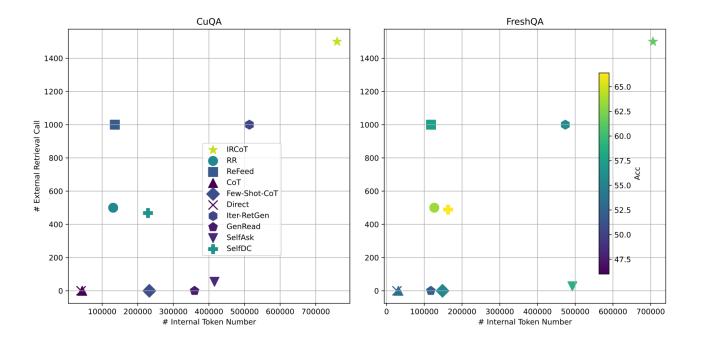
Step2: divide-and-conquer (control)

This is the first work to consider the relationship between reasoning and acting in terms of trade-off between effectiveness and efficiency.

Self-DC: When to Reason and When to Act?

 Self-DC achieves better trade-off between efficiency and effectiveness than retrieval-based methods.

Methods	#R		CuQA		FreshQA						
Methods	# K	EM	F1	Acc [†]	EM	F1	Acc [†]				
w/o retrieval											
Direct	0	29.0	19.4	46.4	27.2	17.3	53.0				
CoT	0	28.8	18.2	46.0	29.2	18.1	53.8				
Few-shot-CoT*	0	43.0	3.2	50.8	35.0	9.1	55.4				
GenRead	0	29.6	29.2	47.4	26.8	27.7	52.0				
	1	v/ retrie	eval								
RR	n	32.0	31.6	55.4	35.2	32.6	63.4				
REFEED	2n	26.2	<u>33.5</u>	51.8	28.8	<u>34.5</u>	57.4				
IRCoT	3n	47.8	13.5	64.6	34.2	17.8	61.4				
Self-Ask*	0- n	19.8	3.8	48.4	5.6	9.8	59.0				
ITER-RETGEN*	2n	23.4	12.6	50.9	31.2	21.1	55.8				
Self-DC (verb)	0- <i>n</i>	34.0	32.2	53.8	30.2	30.2	59.8				
Self-DC (prob)	0- <i>n</i>	<u>36.4</u>	36.5	<u>56.4</u>	37.4	36.6	66.4				



Agentic RL – OTC-PO

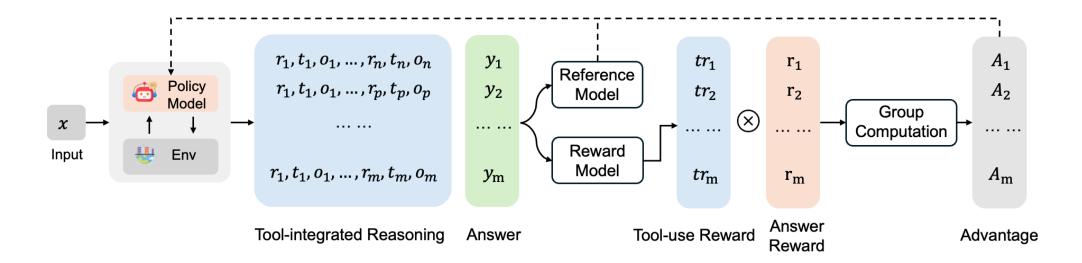
Can we effectively align an agent's tool use boundary to its knowledge boundary via RL, so that smarter tool use could be achieved from experience?

Agentic RL – OTC-PO

We start from one fundamental assumption that given one problem and one LLM, there exist an **optimal number of external tools required**, defined as **minimal number** of tool calls to solve the problem correctly.

Solution: add tool-use reward as a **coefficient** of (outcome reward + format reward)

Why tool-use reward? → Tool overuse and underuse brings serious efficiency issues, especially considering the cost of various tool calls in terms of time, money and computation.



Agentic RL – OTC-PO

• We are the first to define this problem as follows: Here is a tool-integrated reasoning trajectory:

$$\tau_k = (r_0, tc_0, o_0), (r_1, tc_1, o_1), ...(r_k, tc_k, o_k),$$

where r_i , tc_i , o_i denotes the reasoning, tool call and returned observation respectively. The objective of task is to provide the correct answer with minimal cost of tools given the question q and model M.

$$\underset{\tau}{\operatorname{arg\,min}} \; \operatorname{Cost}(\tau) \quad \text{subject to} \quad \mathcal{M}(q,\tau) = \hat{a},$$

❖ We are the first to define tool productivity (TP) as the fraction between benefits and cost.

$$TP = \frac{\sum_{i=1}^{N} \mathbb{I}\{y_i = \hat{y}_i\}}{\sum_{i=1}^{N} tc_i}$$

where *I* is the indicator function which equals 1 if the generated answer is the ground truth answer.

Reward Design -- OTC-PO

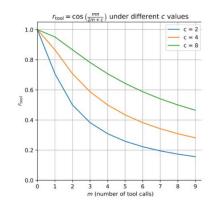
The key idea is to penalize trajectories that involve excessive use of tool calls.

OTC-PPO

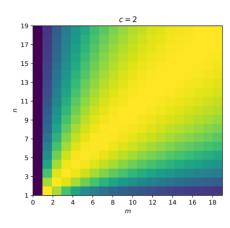
$$r_{tool} = \cos(\frac{m * \pi}{2m + c})$$

$$r_{tool} = \begin{cases} 1 & \text{if } f(m,n) = n = 0 \\ \cos(\frac{m*\pi}{2m+c}) & \text{if } n = 0 \\ \sin(\frac{f(m,n)*\pi}{2n}) & \text{otherwise} \end{cases} \qquad f(m,n) = \begin{cases} 0, & \text{if } m = 0 \text{ and } n = 0 \\ m, & \text{if } n = 0 \\ \frac{2nm}{m+n}, & \text{otherwise} \end{cases}$$

m is the *number of tool calls for current trajectory of the sample* while n stands for the *minimal number of tool calls for the sample till now*.



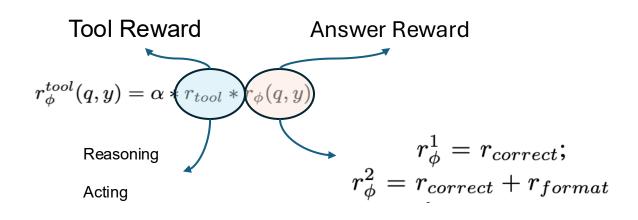
OTC-PPO



OTC-GRPO

Reward Design -- OTC-PO

Unified Tool-integrated Reward Function



- Maximally preserves overall accuracy;
- Mitigates the risk of reward hacking compared to additive forms;
- Generalizes well to different formulations of r_{tool} (including both reasoning and acting) and r_{\emptyset} (appliable to different agentic tasks)

Agentic RL – OTC-PO

Models		NQ			HotpotQA				
Models	EM (↑)	TC (↓)	TP (†)	EM (†)	TC (↓)	TP (†)			
Qwen2.5-3B(-Base	()			ı					
R1-Base	0.226	-	-	0.201	-	-			
SFT	0.249	-	-	0.186	-	-			
RAG	0.348	1.0	0.348	0.255	1.0	0.255			
IRCoT	0.111	10.0	0.011	0.164	10.0	0.016			
Search-R1-PPO	0.403	1.738	0.232	0.279	1.716	0.163			
Search-R1-GRPO	0.404	1.426	0.283	0.312	1.802	0.173			
ŌTC-PPO	-0.355	1.010 (v 41.9%)	$0.351(\overline{51.3\%})$	0.260	_ 1.026 (▼ 40.2%)	0.253 (\$\langle\$ 55.2%)			
OTC-GRPO	0.444	1.008 (29.3%)	0.440 (55.5%)	0.365	1.387 (23.0%)	0.263 (52.0%)			
Qwen2.5-7B(-Base	2)			ı					
R1-Base	0.270	-	-	0.242	-	-			
SFT	0.318	-	-	0.217	-	-			
RAG	0.349	1.0	0.349	0.299	1.0	0.299			
IRCoT	0.224	9.999	0.022	0.133	9.982	0.013			
Search-R1-PPO	0.449	3.282	0.136	0.380	3.741	0.102			
Search-R1-GRPO	0.399	1.697	0.235	0.341	2.109	0.162			
ŌTC-PPO	$\bar{0}.\bar{4}4\bar{6}$	1.040 (v 68.3%)	$0.4\overline{29}$ ($\overline{215.4\%}$)	0.383	- 1.464 (▼ 60.9 %)	0.262 (156.9%)			
OTC-GRPO	0.444	0.990 (▼ 41.7%)	0.448 (90.6%)	0.366	1.005 (▼ 52.3%)	0.364 (▲ 124.7%)			

Models		AIME2	4		AIME25				
Wiodels	$EM(\uparrow)$ $TC(\downarrow)$		TP (†)	EM (†)	TC (↓)	TP (†)			
Qwen2.5-Math-1.5B(-Base)	1								
Qwen2.5-Math-1.5B-Ins	10.0	-	-	10.0	-	-			
Qwen2.5-Math-1.5B-Ins-TIR	13.3	1.1	12.1	13.3	1.4	9.5			
ToRL-GRPO	23.3	2.2	10.6	23.3	2.3	10.1			
ŌTC-ĠŔPŌ		1.1 (v 50.0%)	18.2 (<u>▲ 71.7%</u>)	20.0	1.1 (▼41.2%)				
Qwen2.5-Math-7B(-Base)									
Qwen2.5-Math-7B-Ins	10.0	-	-	16.7	-	-			
Qwen2.5-Math-7B-Ins-TIR	26.7	1.6	16.4	16.7	1.4	12.2			
Base-RL	33.3	-	-	6.7	-	-			
ToRL-GRPO	36.7	2.1	17.5	26.7	2.1	12.7			
ŌTC-GRPO	36.7	0.7 (▼ 66.7%)	52.4 (199.4%)	23.3	0.8 (▼ 61.9%)	29.1 (4 129.1%)			

- Simply optimize answer correctness via RL bring serious over-optimization problem such as tool overuse issue.
- OTC-PO significantly reduce the tool calls and improve the tool productivity, especially when the size of model increases.

Agentic RL – OTC-PO

Question: Are Giuseppe Verdi and Ambroise Thomas both Opera composers?

Answer: Yes

Search-R1-PPO: <think> I need to determine if Giuseppe Verdi and Ambroise Thomas are both opera composers. </think>

<search> Giuseppe Verdi </search>

<observation> ... </observation>

Undesirable tool use behavior

<search> Ambroise Thomas </search>

<observation> ... </observation>

<search> Are Giuseppe Verdi and Ambroise Thomas both Opera composers? </search>

<observation> ... </observation>

<think> Based on the observations, both Giuseppe Verdi and Ambroise Thomas are described as composers, specifically opera composers.

<answer> yes </answer> (Tool Calls = 3)

Cognitive Offloading fosters dependency on external tools, causes memory capabilities to diminish, and inhibits the development of internal reasoning.

Search-R1-GRPO: <think> To answer this question, I need to check if both
Giuseppe Verdi and Ambroise Thomas are composers of opera. I don\'t
have immediate access to this knowledge, but I can conduct a search to
find out.

<search> who are Giuseppe Verdi and Ambroise Thomas and their works

<observation>...

<think>From the information gathered, ... This confirms Thomas as an opera composer. Next, I will search on Giuseppe Verdi.

<search> who is Giuseppe Verdi
/search> Undesirable tool

<observation>...</observation>

Undesirable to use behavior

<think>Giuseppe Verdi is named as an Italian opera composer of prominent stature. This confirms Verdi as an opera composer. Answering the initial question: Question: Are Giuseppe Verdi and Ambroise Thomas both Opera composers?

<answer> yes </answer> (Tool Calls = 2)

OTC-PPO: <think> First, I need to determine if Giuseppe Verdi and Ambroise Thomas are both opera composers. </think> <search> Giuseppe Verdi and Ambroise Thomas both Opera composers </search>

<observation> ... </observation>

<think> Based on the search results, Giuseppe Verdi and Ambroise Thomas are both known as opera composers.
</think>

<answer> yes </answer> (Tool Calls = 1)

OTC-GRPO: To answer the question of whether Giuseppe Verdi and Ambroise Thomas are both Opera composers, let's first reason through the information:

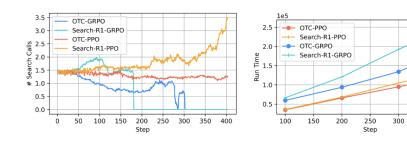
- 1. Giuseppe Verdi is a well-known Italian opera composer. He is famous for his numerous operas, including "Rigoletto," "La Traviata," and "Aida."
- 2. Ambroise Thomas is a French opera composer. He is known for his operas such as "Mignon" and "Hamlet."

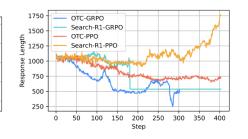
Based on this reasoning, both Giuseppe Verdi and Ambroise Thomas are indeed Opera composers.

<answer> yes </answer> (Tool Calls = 0)

- Cognitive offloading appears more often in larger LLMs.
- (Minimizing external tool calls = maximizing internal reasoning) = Smart Agent.

Agentic RL – OTC-PO





Models	TriviaQA		Pop	pQA 2Wiki		'iki	Mus	ique	Bamboogle	
Moucis	EM (†)	TC (↓)	EM (†)	TC (↓)	EM (↑)	TC (\(\)	EM (↑)	TC (\(\)	EM (↑)	$TC(\downarrow)$
Qwen2.5-3B(-Base)										
Search-R1-PPO	0.566	1.580	0.425	1.631	0.258	1.675	0.051	1.922	0.063	1.766
Search-R1-GRPO	0.587	1.455	0.345	1.542	0.257	1.991	0.084	2.263	0.203	1.859
ŌTC-PPO	$\bar{0.551}^{-}$	$\bar{1.008}^{-}$	0.409	1.009	-0.235	1.050	0.045	1.051	0.063	1.016
OTC-GRPO	0.608	1.046	0.441	1.030	0.341	1.561	0.124	1.734	0.266	1.547
Qwen2.5-7B(-Base	<u>.</u>)									
Search-R1-PPO	0.596	3.353	0.420	3.315	0.326	4.116	0.135	4.294	0.375	3.641
Search-R1-GRPO	0.578	1.704	0.411	1.754	0.340	2.521	0.130	2.616	0.203	1.859
ŌTC-PPO	$\bar{0.623}$	$\bar{1.066}$	$ \bar{0.425} $	$\bar{1.083}$	0.363	1.868	0.152	1.942	0.391	1.828
OTC-GRPO	0.597	0.430	0.431	0.739	0.311	0.938	0.130	1.224	0.250	0.781

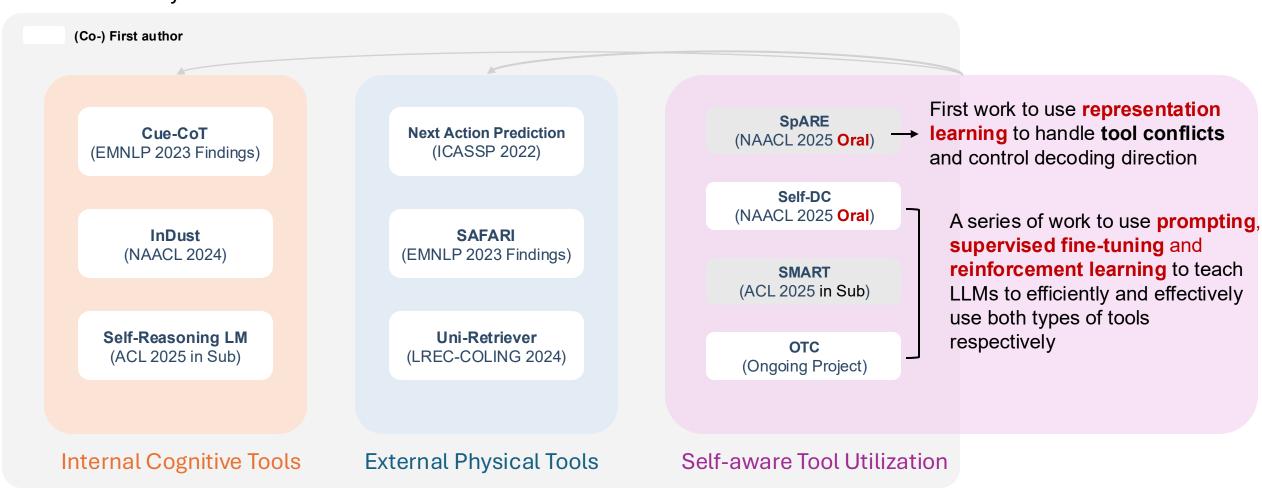
Simple

Faster

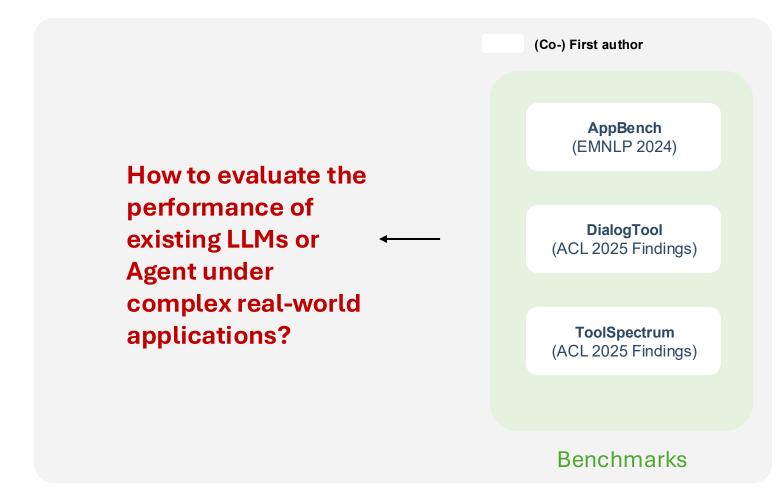
Generalizable

Scalable

Tool-integrated Agents



Tool-integrated Agents



Benchmarks

Human-computer Interaction

GUI, Websites, Apps, ...

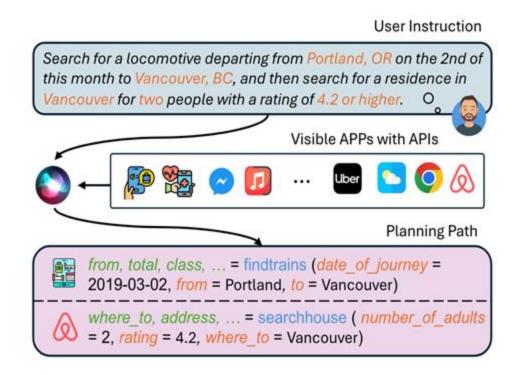
How **human** interact with the world.

Model-computer Interaction

LLM as planner / controller, Language Agent, ...

How **model** interact with the user / world.

Benchmarking Tool Planning in Single-turn Interaction



Single-turn Interaction

✓ Tool Selection ✓ Tool Planning✓ Tool Management

- Two Key Challenges
 - ☐ **Graph structure**: some APIs can be executed independently while others need to be executed one by one, resulting in graph-like execution order;
 - ☐ Permission constraints: which source is authorized to execute the API call.
- Four Data Types
 - Single App Single API (SS): common cases
 - Single App Multiple API (SM): mostly sequential
 - Multiple App Single API (MS): mostly parallel
 - Multiple App Multiple API (MM): both sequential and parallel

Benchmarking Tool Planning in Single-turn Interaction

Data Type	Example	Structure
SS	Instruction: Find a house with a rating of 4.6 or higher for a trip to Delhi for two people, inquire about laundry service availability Output: House: address, phone_number, total_price, has_laundry_service, = searchhouse(number_of_adults='2', rating='4.60', where_to='Delhi')	Para.=1 Seq.=1
SM	Instruction: Please book a Hatchback car with insurance to be picked up from Warsaw Chopin Airport on March 7th at 1:30 pm, and returned on March 13th in Warsaw. Output: Rents: pickup_location, price_per_day, = getcarsavailable(car_type='Hatchback', city='Warsaw', end_date='2019-03-13', pickup_time='13:30', start_date='2019-03-07') Rents: car_type, car_name, = reservecar(add_insurance='True', car_type=car_type, end_date=end_date, pickup_location=#pickup_location, pickup_time=pickup_time, start_date=start_date)	Para.=1 Seq.=2
MS	Instruction: Search for a locomotive departing from Portland, OR on the 2nd of this month to Vancouver, BC, and then search for a residence in Vancouver for two people with a rating of 4.2 or higher. Output: Train: from, total, class, = findtrains (date_of_journey = 2019-03-02, from = Portland, to = Vancouver) House: address, phone_number, total_price, has_laundry_service, = searchhouse(number_of_adults='2', rating='4.2', where_to= Vancouver')	Para.=2 Seq.=(1,1)
ММ	Instruction: Please make a reservation for 3 people at one Korean restaurant in San Francisco at 1:30 pm on March 12th, and also book a Luxury taxi for 3 to 4 Embarcadero Center. Output: Restaurant: restaurant_name, has_vegetarian_options, phone_number, rating, address, price_range, category, = findrestaurants (category = 'Korean', has_seating_outdoors='True', location='San Francisco') Restaurant: date, time, location, = reserverestaurant (date='2019-03-12', location=location, number_of_seats='3', restaurant_name = #restaurant_name, time='13:30') Rents: destination, ride_type, ride_fare, wait_time, number_of_seats = getride(destination='4 Embarcadero Center', number_of_seats='3', ride_type='Luxury')	Para.=2 Seq.=(2,1)

Benchmarking Tool Planning in Single-turn Interaction

Models	SS			SM			MS			MM		
Models	$F1_{app}$	$F1_{api}$	Succ	$F1_{app}$	$F1_{api}$	Succ	$F1_{app}$	$F1_{api}$	Succ	$F1_{app}$	$F1_{api}$	Succ
Mistral-7B	55.97	16.31	0.51	36.59	15.09	0.50	33.72	6.42	0.00	28.92	7.56	0.00
Vicuna-13B	43.20	3.70	2.00	34.71	4.63	0.50	20.43	3.10	0.00	21.05	2.52	0.00
LLaMA3-8B	63.04	42.67	23.23	37.20	25.33	0.50	30.65	19.52	-0.10	26.39	17.80	0.05
LLaMA3-70B	71.20	<u>70.00</u>	<u>50.00</u>	46.48	<u>46.96</u>	<u>10.50</u>	32.61	32.96	2.50	28.97	<u>28.53</u>	0.50
QWen1.5-7B	48.14	19.54	0.00	30.13	16.71	0.00	23.24	10.11	-0.00	23.76	11.55	0.00
QWen1.5-14B	72.89	28.41	10.10	41.89	25.51	1.50	42.22	21.98	0.80	32.36	15.07	0.00
QWen1.5-72B	<u>81.23</u>	24.28	12.50	51.89	25.27	1.00	45.94	13.42	0.62	38.53	11.51	0.00
GPT-3.5	63.60	57.95	30.81	41.49	43.65	6.50	33.17	34.53	$-\frac{7.00}{}$	27.79	28.09	1.00
GPT-40	88.31	86.87	70.92	<u>50.83</u>	50.57	20.50	39.39	39.14	11.00	<u>32.62</u>	32.35	2.00

- Overall, GPT-4o achieves the best overall performance, while LLaMA3-70B sometimes outperforms GPT-3.5, mostly in scenarios only involving single APP.
- As the size of the model increases, the performance can get further improved regardless of the type of instructions and the improvement becomes less significant with multiple APPs.
- The complexity of planning highly impacts the performance of these models. MM is the most challenging tasks, followed by MS, SM and SS.

Benchmarking Tool Utilization in Multi-turn Interaction

"Hi, could you get me a restaurant booking on the 8th please?"

"Any preference on the restaurant, location and time?"

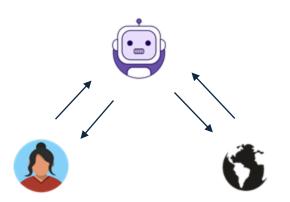
"Could you get me a reservation at P.f. Chang's in Corte Madera at afternoon 12?"

Env State: S_t

"Please confirm your reservation at P.f. Chang's in Corte Madera at 12 pm for 2 on March 8th."

- Tool Creation: What kind of tools to create?
- Tool Awareness: Which action should I take?
- Tool Selection: Which API call is triggered?
- Tool Execution: All arguments fulfilled?
- Response: What should I say w or w/o tools?
- Role Play: What kind of response style?

Benchmark			Tool	Learning	Evaluation					
Dencimal K	Apps	APIs	Argu.	C. S. E.	States	Awareness	Role	Hierarchical	Resp.	Multi-turn
APIBench (Patil et al., 2023)	3	1,715	(1.5/1.0)	XI √I √	X	X	X	×	X	X
API-Bank (Li et al., 2023)	8	53	(2.5/1.0)	XIVIV	X	X	X	×	1	✓
ToolBench (Qin et al., 2023c)	49	16,464	(1.0/1.0)	XI 🗸 I 🗸	X	X	X	✓	X	✓
ToolQA (Zhuang et al., 2023)	6	13	(1.0/1.0)	XI 🗸 I 🗸	X	×	X	×	1	X
GAIA (Mialon et al., 2023)	-	-	-	XIVIV	X	×	X	×	1	X
UltraTool (Huang et al., 2024)	22	2032	(4.1/1.6)	/ / /	X	X	X	×	X	X
AgentBench (Liu et al., 2023)	8	-	-	X √ √	Х	X	X	X	Х	X
MINT (Wang et al., 2024c)	8	-	-	XIVIV	X	×	X	×	1	X
AgentBoard (Ma et al., 2024)	9	-	-	X \ / \	✓	X	X	X	X	✓
DialogTool	16	31 [♡]	(4.2/7.5)	√ √ √	✓	✓	1	✓	√	✓



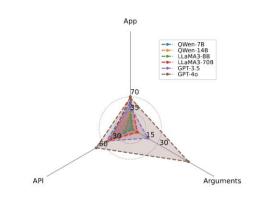
User-Agent-Environment Interactions

Multi-turn Interaction

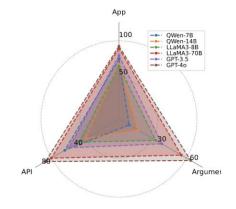
Benchmarking Tool Utilization in *Multi-turn* Interaction

Models	Tool Creation	To	ol Utilizatio	on	Role-consistent Responses			
Models	1001 Creation	Awareness	Selection	Execution	BLEU	R.L	Role	Human
ChatGLM3-6B	31.5	58.9	32.8	6.8	7.8	7.5	4.8	1.64
LLaMA2-7B	33.2	63.5	27.4	7.0	6.8	5.7	6.2	1.25
QWen1.5-7B	21.9	<u>68.9</u>	54.7	11.3	8.0	7.4	7.0	<u>2.82</u>
Mistral-7B	11.4	42.5	51.8	22.6	8.0	7.1	6.7	2.28
LLaMA3-8B	<u>62.2</u>	46.3	<u>61.4</u>	<u>45.6</u>	8.3	<u>7.7</u>	<u>7.0</u>	2.69
LLaMA2-13B	48.8	$\begin{vmatrix} - & - & - & - & - & - & - & - & - & - $	51.1	11.7	7.7	$^{-}$ $\bar{6}.\bar{4}$ $^{-}$	$-6.\bar{5}$	2.17
Vicuna-13B	-	<u>64.5</u>	<u>62.9</u>	12.3	<u>10.1</u>	<u>11.5</u>	6.0	<u>2.59</u>
QWen1.5-14B	27.9	51.7	55.6	<u>21.8</u>	9.3	10.9	<u>7.5</u>	2.44
QWen1.5-72B	49.7	75.5	71. <u>9</u>	49.3	10.8	15.3	$^{-}\bar{7}.\bar{4}^{-}$	3.37
LLaMA2-70B	23.0	34.7	57.8	32.6	8.5	10.7	6.2	2.56
LLaMA3-70B	69.7	40.2	57.1	<u>68.1</u>	9.0	11.3	<u>7.7</u>	2.98
GPT-3.5	63.3	67.9	50.0	42.6	$\bar{10.2}^{-}$	11.9	-6.7	3.42
GPT-40	<u>66.7</u>	63.5	77.8	68.7	11.4	<u>14.5</u>	8.3	3.56

- No LLMs achieve an accuracy exceeding 80% at the tool creation and utilization, and most LLMs performed poorly in tool creation and execution tasks compared to their performance in awareness and selection tasks, revealing the complexity and challenges of our dataset and environment.
- We can find that models likely achieves much higher performance under hierarchical setting (select App first and then API) instead of flat one.

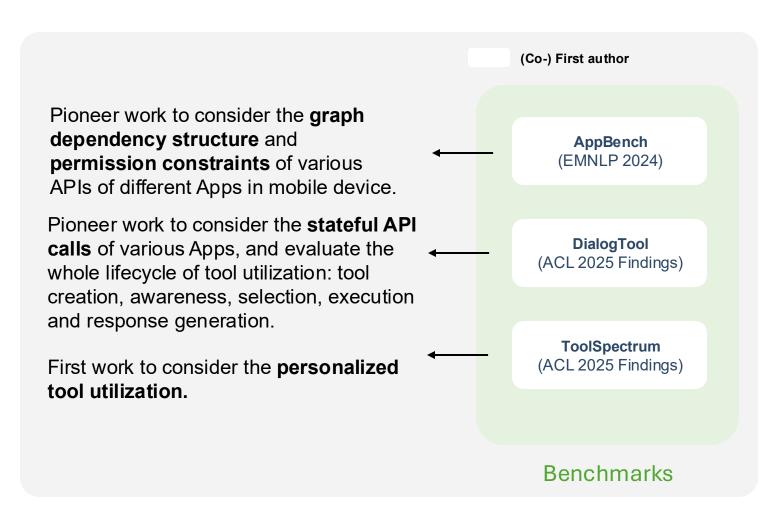


(a) Tool Selection under *Flat* Setting

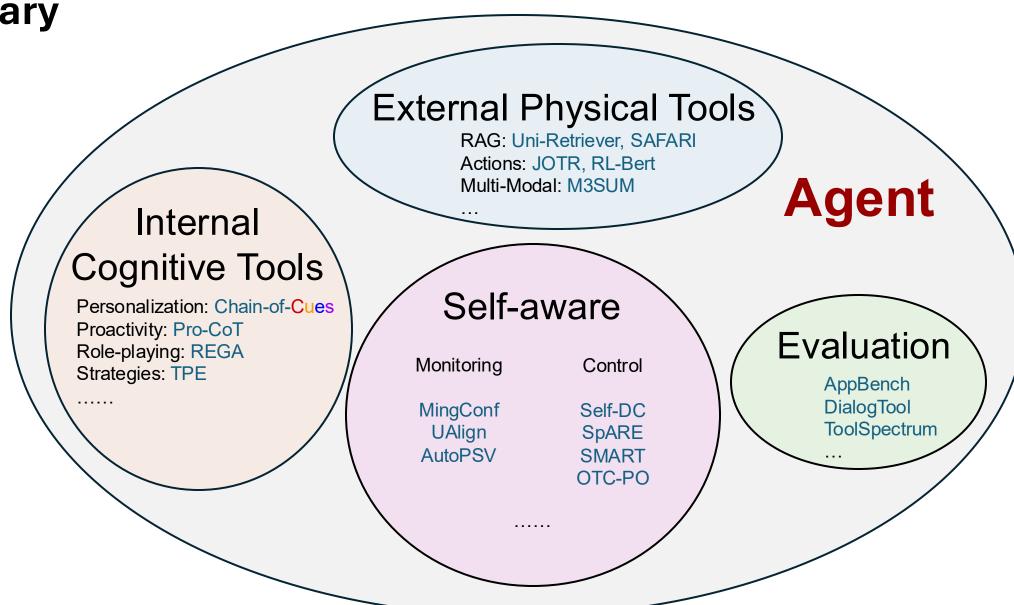


(b) Tool Selection under Hierarchical Setting

Tool-integrated Agents



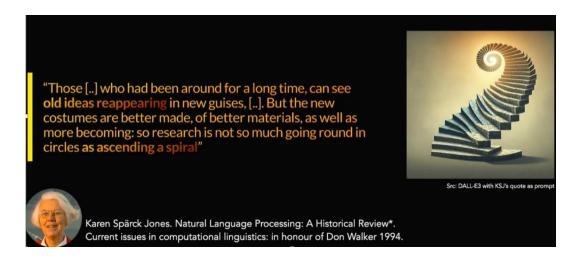
Summary



Thesis Statement

This thesis explores the design of self-aware agents capable of coordinating both internal cognitive tools and external physical tools. It introduces a series of frameworks and methodologies to examine the interaction between these tools, the mechanisms for monitoring and control, and the development of optimal tool-use behaviors.

Future Direction



Time

- Task-oriented Dialogue System (DS)
 - NLU / DST / DPL / NLG
- Open-domain Dialogue System (DS)
 - RAG / Search
- Unified DS / LLM-based DS
- Tool Learning
- Language Agent (new Task-oriented DS)
 - Such as Tau-bench / AppBench

•

personalization

Impossible Triangle in Agent

autonomy

safety

Publication List (Co-first author)

19 (Co-)first author papers

- **1. Hongru WANG**, Wai-Chung Kwan, Min Li, Zimo Zhou and Kam-Fai Wong, "KddRES: A Multi-level Knowledge-driven Dialogue .. Towards Customized Dialogue System", Computer Speech & Language
- 2. Wai-Chung Kwan*, **Hongru WANG***, Huimin Wang and Kam-Fai Wong, "A Survey on Recent Advances and Challenges in Reinforcement Learning Methods", Machine Intelligence Research
- **3. Hongru Wang**, Lingzhi Wang, Yiming Du, Liang Chen, Jingyan Zhou, Yufei Wang, Kam-Fai Wong, "A Survey of the Evolution of Language Model-based Dialogue Systems", ACM Computing Survey (Major Revision)
- **4. Hongru WANG**, Deng Cai, Wanjun Zhong, Shijue Huang, Jeff Z. Pan, Zeming Liu, Kam-Fai Wong, "Self-Reasoning Language Models: Unfold Hidden Reasoning Chains with Few Reasoning Catalyst", ACL 2025 Findings
- **5. Hongru WANG**, Wenyu Huang, et al., Zeming Liu, Jeff Z. Pan, Kam-Fai Wong, "Rethinking Stateful Tool Use in Multi-Turn Dialogues: Benchmarks and Challenges", ACL 2025 Findings
- 6. Zihao Cheng*, **Hongru WANG***, Zeming Liu, Yuhang Guo, et al., Yunhong Wang, Haifeng Wang, "ToolSpectrum: Towards Personalized Tool Utilization for Large Language Models, ACL 2025 Findings
- 7. Boyang XUE*, **Hongru WANG***, Rui Wang, et al., Wenxuan Zhang, Kam-Fai Wong, "MlingConf: A Comprehensive Study of Multilingual Confidence Estimation on LLMs", ACL 2025 Findings
- 8. Yuheng Lu*, Qian Yu*, **Hongru WANG***, Zeming Liu, Wei Su, et al., Yunhong Wang, Haifeng Wang, "TransBench: Breaking Barriers for Transferable GUI Agents in Dynamic Digital Environments", ACL 2025 Findings
- **9. Hongru WANG**, Boyang Xue, Baohang Zhou, et. al, Kam-Fai Wong, "Self-DC: When to Reason and When to Act? Self Divide-and-Conquer for Compositional Unknown Questions", NAACL 2025 Oral

Publication List (Co-first author)

19 (Co-)first author papers

- **10. Hongru WANG**, Rui Wang, Boyang XUE, et. al, Jeff Z. Pan, Kam-Fai Wong, "AppBench: Planning of Multiple APIs from Various APPs for Complex User Instruction", EMNLP 2024
- **11. Hongru WANG**, Huimin Wang, Lingzhi Wang, et. al, Kam-Fai Wong, "TPE: Towards Compositional Reasoning over Conceptual Tools with Multi-persona Collaboration", NLPCC 2024
- 12. Rui Wang*, **Hongru WANG***, Fei Mi, Boyang XUE, Yi Chen, Kam-Fai Wong, Ruifeng Xu, "Enhancing Large Language Models Against Inductive Instructions with Dual-critique Prompting", NAACL 2024
- **13. Hongru WANG**, Yujia Qin, Yankai Lin, Jeff Z. Pan, Kam-fai Wong, "Empowering Large Language Models: Tool Learning for Real-World Interaction", SIGIR 2024 Tutorial
- **14. Hongru WANG**, Boyang Xue, Baohang Zhou, et. al, Kam-Fai Wong, "UniRetriever: Multi-task Candidates Selection for Various Context-Adaptive Conversational Retrieval", LREC-COLING 2024
- **15. Hongru WANG**, Baohang Zhou, Zhengkun Zhang, Yiming Du, David Ho, Kam-Fai Wong, "M3Sum: A Novel Unsupervised Language-guided Video Summarization", ICASSP 2024
- **16. Hongru WANG**, Minda Hu, Yang Deng, et. al, Irwin King, Kam-Fai Wong, "Large Language Models as Source Planner for Personalized Knowledge-grounded Dialogue", EMNLP 2023 Findings
- **17. Hongru WANG**, Rui Wang, Fei Mi, et. al, Ruifeng Xu and Kam-Fai Wong, "Cue-CoT: Chain-of-thought Prompting for Responding to In-depth Dialogue Questions with LLMs", EMNLP 2023 Findings
- **18. Hongru WANG**, Zezhong Wang, Wai-Chung Kwan, Kam-Fai Wong, "MCML: A Novel Memory-based Contrastive Meta-Learning Method for Few Shot Slot Tagging", IJCNLP-AACL 2023
- **19. Hongru WANG**, Huimin Wang, Zezhong Wang and Kam-Fai Wong, "Integrating Pretrained Language Model for Dialogue Policy Learning", ICASSP 2022

78

Publication List (Co- author)

22 (Co-)author papers

- 1. Nan Hu, Jiaoyan Chen, Yike Wu, Guilin Qi, **Hongru WANG**, et al., Jeff Z. Pan, "Can LLMs Evaluate Complex Attribution in QA? Automatic Benchmarking using Knowledge Graphs", ACL 2025
- 2. Yan Yang, Yixia Li, **Hongru WANG**, Xuetao Wei, James Jianqiao Yu, Yun Chen, Guanhua Chen, "ImPart: Importance-Aware Delta-Sparsification for Improved Model Compression and Merging ...", ACL 2025
- 3. Yu Zhao, et al., **Hongru WANG**, Xuanli He, Kam-Fai Wong, Pasquale Minervini, "Steering Knowledge Selection Behaviours in LLMs via SAE-Based Representation Engineering", NAACL 2025 Oral
- 4. Yan Yang, Zeguan Xiao, Xin Lu, **Hongru WANG**, et al., Guanhua Chen, Yun Chen, "SeqAR: Jailbreak LLMs with Sequential Auto-Generated Characters", NAACL 2025
- 5. Jianqiao Lu, Zhiyang Dou, **Hongru WANG**, et. al, Zhijiang Guo, "AutoPSV: Automated Process-Supervised Verifier", NeurIPS 2024
- 6. Rongwu Xu, Zehan Qi, Zhijiang Guo, Cunxiang Wang, **Hongru WANG**, Yue Zhang, Wei Xu, "Knowledge Conflicts for LLMs: A Survey", EMNLP 2024
- 7. Jingtao Cao, Zhang Zheng, **Hongru WANG**, Kam-Fai Wong, "VLEU: a Method for Automatic Evaluation for Generalizability of Text-to-Image Models", EMNLP 2024
- 8. Zezhong Wang, Fangkai Yang, Lu Wang, Pu Zhao, **Hongru WANG**, et. al, Kam-Fai Wong, "SELF-GUARD: Empower the LLM to Safeguard Itself", NAACL 2024
- 9. Rui Wang, Jianzhu Bao, Fei Mi, Yi Chen, **Hongru WANG**, et. al, Kam-Fai Wong, Ruifeng Xu, "Retrieval-free Knowledge Injection through Multi-Document Traversal for Dialogue Models", ACL 2023

• • • • •

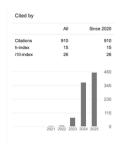
Others

Hongru WANG

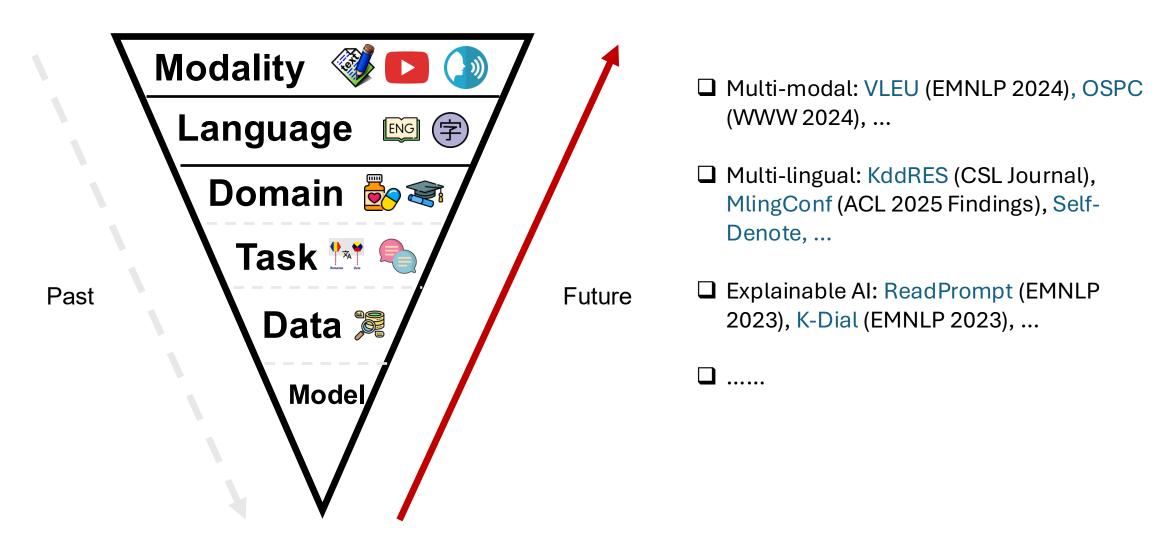
Ph.D. Candidate

Department of Systems Engineering and Engineering Management, The Chinese University of Hong Kong

- Google Scholar: Citations: 900+, h10-index: 26
- Best Paper Awards: SIGHAN @ACL 2024, International Doctoral Forum
- Community: Area Chair@ NeurIPS 2025, Reviewer@ ARR, IJCAI,
- Publications: 40+ papers, including 19 (Co)First author papers @ACL, EMNLP,
 NAACL, COLING, Computer Speech & Language and 22 Co-author papers
- Representative works: Cue-CoT, SAFARI, Self-DC, AppBench, OTC, Theory of Agent
- First Tool Learning Tutorial @ SIGIR 2024
- First Cantonese-based Task-oriented Dialogue System (KddRES)
- Champion on WWW2024 Online Safety Prize Challenge
- Funding and Grants: TBF22ENG004 and OSCP2023-2024
- Interns and Visiting: BlenderLab@UIUC, EdinburghNLP, ByteDance-Seed
- Co-founder and Committee Member: NLP Academic Exchange Platform (NICE)
 - Homepage: https://nice-nlp.github.io/
 - Fans: 15w+; Talks: 60+; Invited Speakers: 150+; Views: 15w+
 - Committee: Senior Members: 8 professors; Members: 13 PhD students
- Research Interests: Dialogue System, Tool Learning, Language Agent



Others



Benchmarks Introduction Method Summary **Future Work**

Acknowledgement

Prof. Kam-Fai Wong (CUHK)

Prof. Heng Ji (UIUC)

Prof. Jeff Z. Pan (University of Edinburgh)

Prof. Mendi Wang (Princeton University)

Big thanks to my supervisor and collaborators!

Dr. Huimin Wang

Dr. Lingzhi Wang

Dr. Wai-chung Kwan

Dr. Xiusi Chen

Zezhong Wang

Jingtao Cao

Yiming Du

Liang Chen

Boyang Xue

Rui Wang

Minda Hu

Yu Zhao



Cheng Qian

Jiahao Qiu

Thank You!

(Q & A)