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Abstract

Language Agents (LA) are capable to reason and act in various contexts to solve complex

tasks in practice, such as OpenAI Deep Research, Manus and Alita. While these systems

exhibit increasing levels of autonomy, several fundamental questions remain inadequately

addressed in current research: What is a language agent? What constitutes its desired

behavior? And how can such behavior be realized in practice?

This thesis formalizes a systematic framework that models an agent as a tool-use

decision maker. The agent not only interacts with external environments but also monitors

its own internal knowledge state to make informed tool-use decisions and achieve its goals.

Specifically, we first introduce a straightforward and universal principle that categorizes all

types of interactions or behaviors of agents into two fundamental types: internal cognitive

tool usage and external physical tool usage. By integrating these two typical tools with

language agents, it is capable to deliver the pre-defined goal with greater efficiency and

adaptability. The thesis is further developed in two parts: methods and benchmarks.

Part I lays the methodological foundation of unification of internal cognitive tools and

external physical tools for language agents, and further formulate tool-integrated language

agent as a tool-use decision maker to gain enough knowledge to achieve the pre-defined goal.

The core idea is augment language agents with the utilization and planning capabilities of

internal cognitive tools, such as reflection and chain-of-thoughts (CoT), alongside external

physical tools, such as retriever and calculator, leading to more autonomous actions and

helpful responses. Furthermore, we explore several methods for managing complementary

or overlap tools, ensuring that agents can make informed decision at each time step with
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the alignment between knowledge boundary and decision boundary. Inspired by meta-

reasoning theory, the unified framework demonstrates how language agents can achieve

a better trade-off between effectiveness and efficiency when tackling complex tasks via

prompt engineering, supervised fine-tuning and reinforcement learning. We additionally

discuss the different behaviors of agents to achieve the pre-defined goal and present an

actionable roadmap to optimize such behavior of agents.

Part II highlights several practical challenges faced by existing language agents to interact

with the world through the introduction of three benchmarks. These benchmarks focus

on single-turn and multi-turn interactions, testing the agents’ or LLMs’ ability to handle

complex tool structures, stateful environments and personalized utilization. By simulating

real-world scenarios, such as managing workflows in complicated ecosystems and meeting

the preference for diverse users, these benchmarks propose new challenges and shed light

for future development of language agents.

Combining theoretical innovation with practical validation, this thesis provides a sig-

nificant step toward developing more autonomous, personalized and intelligent language

agents. The well-grounded framework of agent and the associated benchmarks establish

a strong foundation for future research, paving the way for agents capable of seamlessly

integrating cognitive tools with external physical tools to navigate increasingly complex

environments.
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摘要

語言智能體能夠在各種情況下通過推理和行動來解決實踐中的複雜任務，例如OpenAI Deep

Research、Manus 和Alita。雖然這些系統表現出越來越高的自主性，但目前的研究仍然沒

有充分解決幾個基本問題：什麼是語言智能體？他應該表現出什麼樣的行為模式？而這種行

為在實踐中又該如何實現呢？

本論文提出了一個系統框架，將語言智能體建模為工具使用決策者。其不僅需要與外部

環境交互，還需要監控其自身的內部知識狀態，以做出明智的工具使用決策並實現其預定的

目標。具體來說，我們首先介紹一個簡單而普遍的原則，將語言智能體的所有類型的互動或

行為分為兩種基本類型：內部認知工具的使用和外部物理工具的使用。透過將這兩種典型工

具與語言智能體結合，它能夠以更高的效率和自主性來完成預定的目標。論文進一步分為兩

部分：方法和基準。

第一部分為語言智能體利用內部認知工具和外部物理工具奠定了方法論基礎，將代理定

義為工具使用決策者來獲取足夠的知識以實現預定目標。其核心思想是增強語言智能體對內

部認知工具（例如反思，思維鏈）以及外部物理工具（包括檢索器，計算器等）的使用和規

劃能力，從而實現更自主的行動和更用幫助的回復。此外，我們還探索了幾種管理互補或相

似功能工具的方法，確保語言智能體能夠在知識邊界和決策邊界保持一致的情況下在每個時

間步驟做出明智的決策。受元推理理論的啟發，統一框架展示了語言智能體如何透過提示工

程、監督微調和強化學習在處理複雜任務時實現效果和效率之間的更好權衡。我們也討論了

語言智能體為實現預定義目標而展現的不同行為模式，並提出了優化語言智能體行為的可行

方案。

第二部分透過介紹三個基準，重點介紹了現有語言智能體與世界互動所面臨的幾個實際

挑戰。這些基準測試著重於單輪和多輪交互，測試大語言模型或者語言智能體處理複雜工具
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結構、有狀態環境和個性化工具使用的能力。透過模擬現實世界的場景，例如管理複雜生態

系統中的工作流程以及滿足不同用戶的偏好，這些基準提出了新的挑戰，並為語言智能體的

未來發展提供了啟示。

本論文將理論創新與實踐驗證結合，為開發更自主、個性化和智能的語言智能體邁出了

重要一步。語言智能體的系統性框架和相關基準為未來的研究奠定了堅實的基礎，為其能夠

更好地將認知工具與外部物理工具整合以面臨日益複雜的環境鋪平了道路。
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Chapter 1

Introduction

1.1 Motivation

"The autonomous machine intelligence is designed to minimize the number of
actions a system needs to take in the real world to learn a task."

—- Yann Lecun [2]

Large Language Models (LLMs) have rapidly evolved beyond text generation into

autonomous language agents capable of independently planning and executing complex

tasks with minimal human oversight [3]. These emerging capabilities have enabled a

broad range of real-world applications, including travel planning [4], human-computer

interaction [5, 6, 7], and scientific research [8, 9, 10]. However, as these systems become more

agentic and autonomous, several foundational questions remain underexplored: what is the

agent 1? What constitutes its desired behavior? And how can such behavior be realized in

practice?

Most of previous methods frame agents as LLMs that interleave internal reasoning

and external actions to complete tasks [5, 11, 12]. While functionally effective, this prag-

matic framing lacks a principled account of how such behaviors should be coordinated

or optimized. From an empirical standpoint, existing agentic systems primarily rely on

1We use agent, language agent and autonomous agent interchangeably in the thesis.
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CoT Reflection Decomposition... Actions Models Functions

Internal Cognitive Tools External Physical Tools

Agent: Goal-oriented 
Tool-use Decision Maker

...

Memory

Figure 1.1: Conceptual framework of agent as a goal-oriented tool-use decision maker. The memory can be
both internal (i.e., short-term memory) or external (i.e., long-term memory).

prompting [13] or supervised fine-tuning [14], but seldom investigate how these training

paradigms relate to the desired agent behavior, leaving opaque the reasons behind agentic

success or failure.

At a high level, this thesis proposes a principled framework of agent that offers a unified

definition, actionable methods to optimize the behavior policy of agents. We advocate that

the truly autonomous agent should learn the compression of the world as much as possible

in its own parametric space and minimize external interaction to take in order to achieve a

pre-defined goal, providing a concrete roadmap for building such agents. Moreover, the

thesis also constructs a suite of benchmark environments that capture the complexity and

diversity of real-world interaction patterns, enabling systematic evaluation of agent behavior

across different applications.

Methods. Most of previous method often identify agents as LLMs that interleave reasoning

(internal) and acting (external) to complete tasks, following (thoughts, action, observation)

format [11]. For example, the agent needs to reason about its current state (i.e., thoughts),

then decide which action to take (i.e., action) — such as calling a search engine — and

receive external feedback (i.e., observation), repeating this process until it completes the
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pre-defined goal. While functionally effective, this pragmatic framing lacks a principled

account of how such behaviors should be coordinated or optimized. This thesis introduce

a unified framework that regarding both internal reasoning and external acting as two

different types of tools: internal cognitive tools and external physical tools, re-defining the

agent as a tool-use decision maker that adaptively choose between internal introspection

and external interaction (Figure 1.1). This framework is grounded in the core insight that

reasoning and acting are not distinct behaviors but rather epistemically equivalent tools for

acquiring task-relevant knowledge. We explore several methods to build agents capable

to use both internal cognitive tools and external physical tools, and more importantly,

dynamically balance the use of them to achieve more efficient and effective agent behavior

besides the completion of the pre-defined goal such as providing correct answer.

Benchmarks. To further investigate the gap between existing LLMs and truly autonomous

agent, this thesis introduces several benchmarks to evaluate the performance of tool uti-

lization for existing LLMs in terms of single turn tool planning, multi-turn stateful tool

utilization and personalized tool utilization. These provide new challenges for agents to

utilize tools under more practical settings, as well as tremendous opportunities to develop

more capable, context-aware, and personalized agents.

1.2 Preliminaries

1.2.1 The Unification of Reasoning and Acting

It is widely recognized that reasoning and acting constitute the two fundamental capabilities

of intelligent agent behavior [11, 15]. Reasoning enables an agent to plan, infer, reflect,

and monitor its internal cognitive state, while acting allows it to engage with the external

environment to gather new information or carry out tasks. Rather than viewing these

modalities as distinct or sequential processes, we propose that:
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A Unified View of Reasoning and Acting

Reasoning and acting should be treated as equivalent epistemic tools within a unified frame-

work, where reasoning entails an internal cognitive tool for manipulating information within

the agent’s parametric knowledge space, while acting entails an external physical tool for

acquiring information beyond the agent’s internal capabilities.

This unified perspective aligns with the affordance theory [16], which suggests that

actions arise from the interplay between perception and interaction. From this perspective,

reasoning and acting are not hierarchically ordered or merely sequential but are co-equal

capabilities of decision-making. Each plays a complementary role in enabling agents to

resolve uncertainty and make progress toward task completion. Embracing this integrated

view encourages the development of intelligent systems that can seamlessly coordinate their

internal cognitive mechanisms and external interactive capabilities, based on their current

knowledge state and the epistemic demands of the task at hand.

Internal cognitive tools. Cognitive tools refer to internal cognitive mechanisms that

support systematic or investigative thinking to solve problems [17]. In the context of

intelligent agents, various reasoning modules [18, 19], such as Chain-of-Thought [20],

reflection, decomposition, and alternative-thinking, function as cognitive processes that

enable the retrieval and manipulation of internal knowledge to guide problem-solving. For

instance, Reasoning via Planning (RAP) [21] conceptualizes the language model as both

a world model and a reasoning engine, incrementally accumulating knowledge through

iterative reasoning steps. Similarly, Self-Discover [18] constructs abstract reasoning structures

and then instantiates them to address complex tasks, mirroring the approach of tool-based

agents that first generate plans for tool use and then execute them sequentially [6, 22].

Beyond these, other cognitive tools appear in diverse applications, such as conversational

strategies in dialogue systems [1] and psychologically inspired mechanisms designed to

model uncertainty, emotion, or user intent [23]. Despite their varied forms, these tools share

a common function: they serve as triggers for internal knowledge retrieval, allowing the model to
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reason and act based on its embedded understanding of the world.

External physical tools. External physical tools refer to modules or interfaces outside

the model that are invoked through specific triggers, such as rules, actions, or special

tokens, whose outputs are then incorporated into the model’s context to inform subsequent

reasoning [22, 24]. These tools function as vital interfaces between the agent and its

environment, enabling the acquisition of task-relevant knowledge that lies beyond the

agent’s internal parameters. Importantly, external tools span a wide spectrum of interactions,

capturing how agents, like humans, leverage their surroundings to reduce uncertainty or

complete tasks. Examples include querying a search engine, calling an API, processing

sensor input, or performing physical actions [24, 25]. For instance, clicking a button in a

user interface may be represented as an external tool call, where the input parameter is

the button’s location and the resulting webpage serves as the observation. Similarly, in

embodied settings, actions such as “MoveTo(Room A)” can be interpreted as tool invocations,

with “Room A” as the parameter and the resulting sensory output as the feedback. This

perspective enables a unified treatment of diverse forms of interaction as structured tool

use: they serve as interfaces for external knowledge acquisition, allowing the model to access and

interact with knowledge beyond its epistemic capacity.

1.2.2 Tool-Integrated Agents

Building on the unification of reasoning and acting, we further propose a redefinition of the

agent grounded in this integrated perspective:

Definition of Agent

An agent is an entity that coordinates internal cognitive tools (e.g., reflection) and external

physical tools (e.g., function callings) to acquire knowledge in order to achieve a specific goal.

From this viewpoint, an agent is fundamentally a knowledge-driven decision-maker

that navigates a task by alternating between internal reasoning and external interaction.

Formally, a tool-integrated agent trajectory can be described as:
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Figure 1.2: Our proposed agent framework integrates both internal cognitive tools and external physical tools
with agent itself as a world model.

τ = (t1, k1, t2, k2, ..., tn, kn), (1.1)

where each ti is either an internal or external tool invocation, and each ki represents

the corresponding knowledge retrieved. Here, “knowledge” is broadly defined as any

information that advances the agent’s problem-solving state. At each step, the agent must choose

the most epistemically valuable tool based on its current state, aiming to progressively

bridge the knowledge gap toward a complete solution. The process concludes when the

agent has accumulated sufficient knowledge to achieve the pre-defined goal.

This unified framework offers several key advantages: (1) It generalizes prior approaches

such as ReAct [11], which can be viewed as special cases where internal tool steps (e.g.,

reasoning) are treated as monolithic thought units ri, leveraging the model’s pre-trained

cognitive abilities without requiring explicit tool separation. (2) It aligns with findings from

large reasoning models (LRMs), which show that outcome-based reinforcement learning

(RL) can effectively train agents to discover and utilize internal cognitive tools [26]. The same

principle applies to external physical tools, as shown in recent studies on tool-augmented

agents [27]. Thus, the framework provides a coherent foundation for agentic learning across

both domains. (3) Most importantly, this perspective leads to a new learning paradigm:

next tool prediction. Just as next-token prediction enables LLMs to learn a compressed

representation of the world from text, next-tool prediction allows agents to learn procedural

knowledge through interaction. By learning to choose the right tool, agents can dynamically
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update their internal representations and evolve through experience, mimicking human-like

adaptation and learning.

1.3 Contributions Overview

This thesis aims at developing intelligent language agents which mirror the human intelli-

gence to master internal cognitive tools and external physical tools at the same time and

dynamically call them on demand based on self-aware monitoring signals. More specifically,

how could an agent can express emotions and generate more natural responses just like

humans? how to plan the calls of multiple external physical tools in different contexts?

and how to call different tools on demand especially when these tools have overlapping

functionalities or complementary with each other? The key philosophy of this thesis is to

explore an universal and scalable way to unify all interactions from the tool perspective.

Building Agents with Internal Cognitive Tools First, to generate more natural and human-

like responses, we propose chain-of-cues –a novel linguistic cue-based chain-of-thoughts,

in order to mimic the cognitive processing of humans which is capable of inferring the

underlying user status beneath the dialogue context. To evaluate our method, we build a

new benchmark, consisting of 6 dialogue datasets in both Chinese and English, targeting 3

major linguistic cues during the conversation: personality, emotion, and psychology. The

empirical results demonstrate our proposed Chain-of-Cues method outperforms standard

prompting methods in terms of both helpfulness and acceptability on all datasets regardless

the model used. Moreover, we also present how to incorporate more internal cognitive tools

at different tasks such as various conversational strategies in tutoring dialogue system and

different reasoning modules (i.e., reflection, decomposition) to solve complex problems.

Building Agents with External Physical Tools Further, we alternatively explore agen-

tic retrieval-augmented generation (RAG) problem which combines the capabilities of

autonomous agents with retrieval-augmented generation to dynamically retrieve and syn-
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thesize information to generate the final response. We opted to decompose the multiple

knowledge sources-augmented generation problem into three consecutive steps: 1) planning:

make a series of decision to determine whether or not use knowledge, which source to

use and when; 2) retrieval: call external retriever to retrieve corresponding documents;

and 3) assembling: incorporating all previous results to generate the final response. Our

proposed framework: SAFARI, showcases exceptional performance to plan, understand,

and incorporate these multiple knowledge sources and capture the dependency relationship

within them. Additionally, we explore how to iteratively refine outputs through feedback

loops, mimicking human-like problem-solving. We also discuss different methods for im-

proving the agent’s decision-making capabilities to call external tools, including learning

from demonstrations and learning from feedback.

Building Agents with Self-aware Tool Utilization The integration of internal cognitive

tools and external physical tools does not only stands for a novel perspective to build

powerful language agents, but also brings new challenges in real world. Inspired by

meta-reasoning theory [28], we first present that desired strategy to monitor and control

the behavior of language agent and advocate the key lies in the alignment between the

knowledge boundary with the tool-use decision boundary. Specifically, we propose Self

Divide-and-Conquer (Self-DC) framework, enables language agent to adaptively choose

internal cognitive tools or external physical tools as needed according to self-aware confi-

dence signals, resulting in a better trade-off between effectiveness and efficiency. Moreover,

we explore better monitoring and control methods, aiming to verify the correctness of

each decision and make every tool call meaningful and useful. To address the knowledge

conflict by different types of tools, we leverage the different representations of language

agent at different context to detect it and generate aligned response with the trusted source.

We define the new agent objective and then present a systematic approach to realize this

objective in practice.
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Benchmarking Tool Planning in Physical World Finally, we built a benchmark for lan-

guage agents that is highly realistic and impactful. Specifically, we focus on agents that

perform tool planning in the mobile device, i.e., apple intelligence. We consider two signifi-

cant challenges in multiple APIs of mobile devices: 1) graph structures: some APIs can be

executed independently while others need to be executed one by one, resulting in graph-like

execution order; and 2) permission constraints: which source is authorized to execute the API

call. We then categorize user instruction into four types: SS, SM, MS, MM where the first S

or M stands for the number of Apps required, and later S or M the number of API required

to solve the user task. Even the most powerful language models (i.e., gpt-4o) only achieves

only a 2.0% success rate at the most complex instruction, highlighting the need for further

development of powerful language agents for real-life tasks.
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Methods
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Chapter 2

Cue-CoT: Building Agents with

Internal Cognitive Tools

2.1 Introduction

Large Language Models (LLMs) naturally acquire a range of internal cognitive tools -

such as reflection and decomposition - through pretraining on massive text corpora [29].

Empirical evidence suggests that even the existing most advanced models, such as DeepSeek-

R1 [26], inherit these tools from dialogue-centric datasets and further amplify them through

reinforcement learning [30]. These internal tools play a critical role in guiding the model’s

reasoning processes, serving as foundational capabilities that enable systematic and creative

problem-solving, and are readily activated to enhance task performance. A notable example

is Chain-of-Thought (CoT) prompting [20], which has sparked a new research direction

in prompt engineering. This line of work focuses on designing prompts that selectively

activate different internal cognitive tools within LLMs, ultimately improving their reasoning

quality and downstream task effectiveness [23, 31].

Figure 2.1 shows several major internal cognitive tools utilized in previous studies.

Following conventional functional call promptings, the internal cognitive tools can also be

defined as “tool name: tool description". For instance, the CoT can be defined as “CoT: Let’s

11



decomposition: breaking down a complex problem into smaller, more manageable parts. Making sure 

that you also provide answers for all decomposed problems in this section. You can decompose 

iteratively but should not contain same problem or exceed the max iteration depth which is three.

backward: starting with the desired observations at any previous reasoning step and working backward 

to identify the new reasoning directions.
detail: any details including but not limited to logic and reasons for your reasoning in this way, you are 

encouraged to add this at every unclear or unnatural reasoning step.

summary: summarize your reasoning to help future thinking.

alternatives: directly thinking in other ways, try to explore different solutions as much as possible to 

solve given problem.
reflection: you are encouraged to regularly reflect on your past reasoning in current response at various 

levels of detail, from sentence down to individual word. This will help you better understand and think 

through problems. It's okay to make mistakes; use them as opportunities to learn and improve.

……

Figure 2.1: Some representative internal cognitive tools to guide the reasoning processing of LLMs.

think step by step". Although there are plenty of studies investigate the effects of different

internal tools, this is the first time that we propose to understand these from the tool

perspective. There are several advantages: 1) Not all internal cognitive tools are universally

useful or necessary to activate for every problem, even for widely applicable methods

like CoT [32]; 2) The tool perspective offers a unified framework that encompasses both

internal cognitive tools and external physical tools. This unification enables one promising

path. As simple outcome-based rewards can implicitly encourage the emergence and use

of diverse internal cognitive tools to solve problems, as observed in DeepSeek-R1 [26], it is

feasible to leverage similar method to build truly autonomous agents capable of dynamically

coordinating both internal reasoning and external interactions.

In this chapter, we begin by exploring a specific internal cognitive tool employed by LLMs

in personalized dialogue systems, aimed at generating more personalized, empathetic, and

compassionate responses. Such capabilities are highly valuable in a range of applications,

including recommendation systems and psychotherapy. We then broaden our focus to

a wider set of internal cognitive tools, examining how their composition enables diverse

conversational strategies used in dialogue system. For example, reflection and empathy

have emerged as two particularly effective tools: reflection is widely used to help trainee

teachers develop meta-cognitive skills and enhance their capacity for reflective thinking and

learning [33], while empathy plays a crucial role in offering emotional support in human
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communication [34]. Building on these insights, we propose a self-reasoning language

model that can refine its own reasoning rationales by leveraging a diverse set of internal

cognitive tools. By fine-tuning on its own self-generated data, the model progressively

evolves and achieves improved task performance.

2.2 Related Work

Before the era of LLM, most of the previous work develops personalized [35, 36], emotional

[37, 38, 39], empathetic [40] dialogue system in isolation, rather than seamlessly blending

them all into one cohesive conversational flow [41]. A common approach is to predict the

emotion or persona from a pre-defined set and generate the response in a multi-task manner

[42, 43]. Besides that, lots of work notice these linguistic cues underneath text by directly

predicting them independently as a classification task [44, 45]. Distinguishing from these

previous works, we regard different aspects of cues as part of user status and prompt the

LLMs to reason user status exhibited in the dialogue context, aiming to generate more

helpful and acceptable responses for users.

Large Language Models (LLMs), or foundation models [46], especially after the ap-

pearance of ChatGPT1, recently revolutionize the paradigm of various natural language

processing (NLP) tasks, including dialogue response generation tasks [47]. However, most

existing LLM-based studies directly feed the user query or dialogue content to the LLM

for generating a response with a preceding prompt, making the responses stereotypical

and tedious, especially for in-depth dialogue questions [48]. On the contrary, it is widely

acknowledged that dialogue contexts generally convey a lot of information about the user

status in addition to the pure semantic information from a linguistic perspective [49, 50, 51].

Specifically, the linguistic cues underlying dialogue context have been shown to be an

effective means of revealing the emotions [52], personality traits [49], psychological char-

acteristics [50], and other relevant information of users [53]. Consequently, recognizing

1https://openai.com/blog/chatgpt
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and understanding these cues exhibited in the context of dialogues becomes crucial to

comprehend user intentions and status [40]. By doing so, a dialogue system can generate

responses that align with the user’s expectations, meet their unique needs and preferences,

and ultimately strive towards constructing a human-like conversational experience [54].

2.3 Chain-of-Cues: Personalized Dialogue Response Generation

2.3.1 An Overview

Inspired by the emergent capabilities of LLMs on reasoning over texts [55], while previous

efforts mostly investigate in-context learning [56] or chain-of-thought prompting schemes

[20] on text classification and question answering [57, 58], we take advantage of LLMs to

reason for dialogue, which, to our best knowledge, has not been thoroughly investigated

yet. Specifically, we design a linguistic cue-based chain-of-thoughts (Cue-CoT), consisting

of two variants: O-Cue CoT and M-Cue CoT in which the former one outputs intermediate

reasoning results with a final response in one-step but the later reasons step by step, as

shown in Figure 2.2. In detail, with standard prompting, LLM-based systems directly

generate the response given the dialogue context. Regarding the user status implied by the

context as intermediate reasoning results (Cue CoT), we prompt the system to infer the user

status first and then generate a response based on dialogue context and user status.

To evaluate our approach, we build a benchmark, consisting of 6 in-depth dialogue

datasets in both Chinese and English, considering three major aspects of user statuses:

personality, emotions, and psychology, exhibited during the conversation, forming a compre-

hensive evaluation benchmark incorporating various user statuses in the context of dialogue

response generation. We conduct extensive experiments with 5 LLM-based dialogue systems

based on the benchmark using the aforementioned three types of prompting schemes. To

sum up, our contributions can be summarized below:

• We construct an in-depth dialogue evaluation benchmark considering the personality,

emotion, and psychology of users exhibited in the conversation, with the goal of
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User: If we only rely on free online teaching, 
can we learn the violin? What about the piano?
System: Yes, but with a conscious learning 
spirit and patient practice…..
User: Can we learn violin and piano from
scratch?

Model Input

System: Yes, as long as you are willing to spend 
time and energy on learning and practicing, and 
constantly improve your skills, you can learn 
violin and piano from scratch. At the same time, 
it is recommended that you consider finding a 
professional teacher for guidance, which will 
improve the learning effect more effectively. 
Have you considered looking for a professional 
teacher?

Model Output

Here is the conversation between user and system.

{DIALOGUE_CONTEXT}

Please infer the user status exhibited in the
conversation such as ….

Standard Prompting M-Cue CoT Prompting in Dialogue

SCORES 8 /10

Model Input

Here is the conversation between user and system.

{DIALOGUE_CONTEXT}

Please first output a single line containing user status
such as the user‘s personality traits, psychological and
emotional states exhibited in the conversation. In the
subsequent line, please play a role as system and
generate a response based on the user status and the
dialogue context.

System: Sure! For learning the violin and piano from 
scratch, the most important thing is your learning attitude 
and patience in practice. Violin skills are relatively high, 
and it may be difficult to master them from scratch, but as 
long as you maintain a conscious learning spirit and 
continuous practice, you can gradually master violin skills. 
For piano, it is relatively easier to learn. As long as you 
have a certain sense of rhythm and music foundation, it is 
feasible to learn piano from scratch.

O-Cue CoT Prompting in Dialogue

Model Input

Model Output

SCORES 8.5 /10

User Status: The user has some interest in music and 
a willingness to learn, (Personaliaty) but may lack 
confidence and patience (Psychology)
......as well as some anxiety and worry. (Emotions)

Model Output

User Status: The status shown by the user is curiosity, a 
mindset of curiosity and eagerness to learn.

Intermediate reasoning 

Here is the conversation between user
and system.

{DIALOGUE_CONTEXT}

Here is the user status.
{USER_STATUS}

Please play a role as system ……

Model Input

System: Sure! As long as you have enough enthusiasm and patience for learning, 
as well as the determination to learn music, learning violin and piano is 
completely achievable. (Answer the questions) When you get stuck, don't lose 
heart because learning any skill takes time and effort. (Encouragement) At the 
same time, you can also find some professional teachers or other learning 
resources to help you better master skills and basic skills. Believe in yourself, you 
can become an excellent violinist or pianist! (Give confidence)

SCORES 9 /10

Model Output

Step 1

Step 2

Figure 2.2: An example of different prompting for responding to in-depth dialog questions with LLMs,
including standard prompting, O-Cue CoT, and M-Cue CoT. We shadow the intermediate reasoning results,
i.e., the personality, empathy, and psychological status of the user, and highlight the instructions at the input
and indicate the roles of different parts of the response (in green) in M-Cue CoT.

aligning with unique user needs and status, which consists of 6 datasets, and 7.3k

dialogues.

• We propose two effective dialogue cots: O-Cue CoT and M-Cue CoT, that enable

advanced reasoning and planning based on user statuses. Additionally, we suggest

utilizing intermediate reasoning results as a criterion for selecting demonstrations in

limited training data scenarios, specifically in one-shot settings.

• Our findings demonstrate that both the O-Cue CoT and M-Cue CoT approaches

outperform standard prompting in generating more helpful and acceptable responses

for the users. Specifically, the M-Cue CoT shows superior robustness and reasoning

performance in all datasets and all LLMs. Furthermore, our novel demonstration

selection strategy exhibits superior performance under both random selection and top1

selection.

2.3.2 O-Cue v.s. M-Cue

We describe the prompting schemes in a general form, including standard prompting, O-Cue

CoT, and M-Cue CoT as presented in Figure 2.2.
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Standard Prompting. Most of the previous works directly prompt LLMs to generate

responses solely based on dialogue context or user queries, which lack transparency and

interpretability. The objective is defined as:

M : c → r (2.1)

where M is parameterized by LLMs, c and r demotes dialogue context and response

respectively.

O-Cue CoT. In line with the traditional chain-of-thoughts, we prompt the models to

generate the middle reasoning processing and final results together, for example, we can

prompt the LLMs to generate user status and a final response simultaneously giving

dialogue context, enforcing the LLMs to reason based on the user status. However, it is

important to note that generating intermediate reasoning results with responses together

may lead to a reduction in the length of the different outputs, particularly when multiple

or complex reasoning results are involved, sacrificing the details and explanations. For

example, as shown in O-Cue CoT in Figure 2.2, the generated user status is too short to

provide cues for responses. Moreover, it is infeasible to modify the intermediate results

when it is wrong [59]. Here, we defined the objective as follows in which s stands for user

status:

M : c → s, r (2.2)

M-Cue CoT. In addition to standard prompting and O-Cue, we can further enhance the

quality of responses in LLMs by decomposing reasoning into different consecutive steps

while the final step is to generate responses according to previous reasoning outputs.

On the one hand, it is convenient to process these intermediate outputs, allowing for

actions such as incorporating user profiles for personalization [54] or filtering out erroneous

reasoning results. These intermediate outputs can also be stored for future use, enabling

their utilization for various purposes. On the other hand, these intermediate results can
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< dialogue context 1, user status 1 response 1 >
< dialogue context 2, user status 2 response 2 >

< dialogue context n, user status n response n >
……. …….

Select user status

Context

Status

Input at Step 1

(𝑐 → 𝑠)

Input at Step 2

Context Status Response
(𝑐, 𝑠 → 𝑟)

M-Cue CoTO-Cue CoT

Context
Status

Input

< dialogue context 1 user status 1, response 1 >
< dialogue context 2

< dialogue context n
……. …….

user status 2, response 2 >

user status n, response n >

(𝑐 → 𝑠, 𝑝)
Response

Output

Figure 2.3: Different demonstration selection strategies of O-Cue and M-Cue CoT, while the returned results
such as (c → s, p) are prepended to original input to form new input.

be used as a criterion to select demonstrations under few-shot settings (See next section).

Overall, this technique allows for a clearer and more systematic progression of reasoning,

resulting in better transparency and interpretability. The objective can be viewed as follows:

M : c → s → r (2.3)

2.3.3 In-context Learning

The few-shot performance of LLMs depends heavily on the quality of the demonstrations,

especially for complex tasks that need multiple reasoning steps [57]. Furthermore, in

the context of dialogue systems, the process of selecting demonstrations becomes more

challenging due to the one-to-many nature of dialogue interactions. As a result, novel

approaches are needed to tackle the intricacies of dialogue response selection, taking into

account the dynamic and context-dependent nature of conversations. We here introduce the

demonstration selection strategy of three prompt schemes.

Standard Prompting. Following previous work [20], we use randomly sampled examples

(random selection) or most semantic similar examples (top-1 selection) according to dialogue

context as our demonstrations (c → r).
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O-Cue CoT. Figure 2.3 shows the demonstration selection strategy of Cue-CoT. Although

we still select demonstrations according to dialogue context at O-Cue CoT, the user status is

added as intermediate reasoning results to enhance the reasoning ability of LLMs (c → s, r).

M-Cue CoT. Since there are multiple steps, we design different selection strategies for each

step. Specifically, we first select demonstrations (c → s) according to dialogue context to

infer status, and then select demonstrations (c, s → r) according to user status. In this way,

all intermediate reasoning results can be utilized as a criterion to select demonstrations,

providing additional signals for the latter reasoning. An assumption underneath here is

that users with similar statuses tend to accept responses with a similar style. Besides that,

we also apply random selection and top-1 selection to O-Cue CoT and M-Cue CoT for detailed

comparison.

2.4 Experiments

In this section, we have conducted a comprehensive experiment to compare the performance

of three prompting methods: standard prompting, O-Cue and M-Cue CoT in the benchmark

under both zero-shot and one-shot settings2.

2.4.1 Dataset Collection

In order to evaluate the performance of proposed Cue-CoT to reason different user statuses,

we collect six datasets in terms of personality, empathy, and psychology, in both Chinese

and English.

Personality. Previous works found that the content and style of a user’s inquiry can

provide indirect insights into their personality traits [49, 44]. For instance, an individual

with a tendency towards anxiety may ask for advice on how to alleviate nervousness before

2Since the length of dialogue context is relatively long, the input length limit is easy to break when the
number of shot exceeds 1, so we choose the one-shot setting to conduct in-context learning.
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an upcoming job interview, phrasing the question as follows: "What strategies can I employ

to reduce my anxiety and perform well in tomorrow’s interview?". Since the public existing

datasets either focus on the personae of the system [60] or target classification tasks without

providing corresponding dialogue response [44], we thus build a pipeline to automatically

collect the datasets using ChatGPT (gpt-3.5-turbo-0301). We first collect question-

answer seeds from the two largest real-world online QA forums: Zhihu and Quora3, and

then prompt the ChatGPT to infer the personality first. We lastly require the ChatGPT to

continue the dialogue given the inferred personality and the question-answer seed. In order

to facilitate the continuous generation of transcripts for both participants in a dialogue,

we utilize a template to establish the necessary format and requirements. In this way, the

use of personality seed and question-answer seed in the template assures greater diversity

and reliability of user queries. Specifically, the personality seed determines the style of the

user query, while the question seed determines the content. As a result, the user statuses

vary across different dialogues, contributing to a richer and more varied conversational

experience.

Emotion. In terms of the emotional status of users, we re-organize two existing empathetic

dialogue datasets: D4 [61] and EmpatheticDialogues (a.k.a, ED) [40]. For the former one, we

first identify all utterances from the system labeled as empathic comfort for each dialogue

sample in the test set. From these instances, the utterance with the longest length is chosen

as the ground truth response, regarding preceding utterances as corresponding dialogue

context4. This approach ensures fairness and comparability in evaluating the performance

of LLMs, particularly because they tend to generate lengthy responses. For the ED, there

are two roles in the dialogue: Listener who is actively listening, and Speaker who is speaking

and conveying information. We follow the setting of the original paper [40], and directly

use all samples in the test set. Neither the situation description written by the Speaker nor

3https://www.zhihu.com/ and https://huggingface.co/datasets/quora

4We also tried directly regarding the last utterance labeled as empathic comfort as grounded truth response,
but we found most of them are short and uninformative such as you are welcome, take care and so on.
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Metrics
Chinese English

Zhihu D4 PsyQA Quora ED EMH
Avg.C 258.4 521.0 210.9 149.6 50.2 44.2
Avg.R 76.9 57.9 607.5 48.3 12.9 175.8
Samples 1122 997 1000 1082 2091 1000

Table 2.1: Data statistics of our used datasets including three Chinese datasets and three English datasets,
while each of them represents different aspects of user status during the conversation. We highlight maximum
Avg.C and Avg.R.

the emotional label is contained (just as they were not given to the Listener during dialogue

collection). Thus, the collected empathetic dialogue datasets provide a standard benchmark

for evaluating the LLMs’ ability to generate empathic responses.

Psychology. In order to assess the effectiveness of LLMs in generating counseling

responses for mental health support, we employed two pre-existing datasets, namely PsyQA

[62] and EMH [63]. These datasets were utilized as dialogue pools from which we selected

appropriate samples to serve as a benchmark for evaluating the language models. In

PsyQA, there are 4,012 questions out of 22,341 samples that are sampled to pick the highest-

voted answers. We randomly sample 1,000 out of these 4,012 questions, regarding the

highest-voted answer as ground truth to form a more challenging test set. We also provide

the question description beside the question itself following the original setting [62]. In

EMH, there are 10k (post, response) pairs annotated with three different communication

mechanisms: emotional reactions, interpretations, and explorations. We first sorted examples

according to the length of their answers and then uniformly sampled examples with these

three mechanisms, forming a final test set.

All. Table 5.2 shows the data statistics of our benchmark. The notation Avg. C signifies

the mean context length of instances, and if it exceeds a certain threshold, it may surpass

the input context limit of LLMs5 or become too lengthy for LLMs to comprehend. On the

5For example, the input context limit of belle-llama-7b-2m is 2048, and few of examples from D4 exceeds
the limit and the scenario becomes worse under the one-shot setting. We will have more detailed analysis in
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other hand, Avg. R denotes the average response length. Generally, longer responses tend

to be more comprehensive and clearer, presenting a more challenging baseline for LLMs to

surpass. To sum up, we build a benchmark, consisting of six datasets (three Chinese datasets

and three English datasets) in terms of three aspects of user status during the conversation,

hoping the release of it can facilitate the research of dialogue systems based on LLMs.

2.4.2 Setup

LLMs Family. We compared the performance of different LLMs with our benchmark, in-

cluding ChatGLM-6B [64], BELLE-LLAMA-7B-2M [65], ChatGPT for Chinese, and Alpaca-7B

[66], Vicuna-7B-v1.16 and also ChatGPT for English. We strictly follow the commands

and procedures to recover the weights of these models and we strongly suggest that the

reader read the original paper to check more details. We set the temperature as 0.2 and top

p as 0.1 for evaluation, and temperature as 0.7 and top p as 0.95 for generation in all models.

We use BERT [67] as an encoder to select the nearest example to the test query for top-1

one-shot setting, storing the mean vector of examples as sentence embedding7.

Evaluation. 1) Metrics: Lots of previous works found that chatgpt demonstrates superior

performance than most existing automatic metrics to evaluate the quality of texts [48]. We

mainly choose to use it to evaluate the quality of the generated responses in a pair-wise

manner, considering helpfulness and acceptness. The evaluation templates can be found

in original paper and we calculate the win rate using #wins / ( #wins + #ties + #loses). In

addition, we also provide the performance of most existing automatic metrics [40, 62] such as

Avg.BLEU and F1 but we found it can not align well with human judgments [48]. 2) Methods:

Due to the exceptional proficiency of the LLM-based dialogue system, it is relatively easy

for them to beat the ground truth responses in the original datasets, we consider standard

later sections.

6https://github.com/lm-sys/FastChat

7We directly user bert-base-chinese for all Chinese datasets and bert-base-uncased for all English
datasets, we do not finetune the BERT model.
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prompting as a more challenging baseline and compare the responses generated using our

proposed Cue-CoT with the response generated using standard prompting, which is more

fair and convincing. We also provide the human evaluation result as a reference.

2.4.3 Main Results

All. Table 2.2 and Table 2.3 present the win rate of responses generated by O-Cue and M-Cue

CoT compared with the responses by standard prompting on Chinese and English datasets

respectively. Despite that there are few LLMs that perform worse than standard prompting

using O-Cue due to its complex instructions, i.e. ChatGLM in Chinese and Alpaca in

English, it is observed that O-Cue can achieve above 50% win rate mostly in Both Chinese

and English. Moreover, it is exciting to find that M-Cue further boosts performance and

achieves higher win rates irrespective of the type of language model, datasets, or settings

used, revealing its robustness and effectiveness. We attribute this to the relatively easy-

understanding instructions and clear outputs in each step of the M-Cue, since some LLMs

are incapable to follow relatively long instructions in O-Cue and output the content and style

as required. For example, we asked the LLMs to output user status and response in two

separate lines but only a few LLMs output in the format, making it difficult to distinguish

the response from reasoning results. Also, the combined output of the user status and

response can potentially limit the length of various components, thereby accounting for the

disparity between O-Cue and M-Cue. Furthermore, we found that the acceptness is relatively

lower than helpfulness for Chinese LLMs but higher for English LLMs, especially under the

one-shot setting, revealing the weakness of Chinese LLMs to provide acceptable besides

helpful responses.

Chinese LLMs. Table 2.2 shows the performance of Chinese LLMs. We surprisingly

found that ChatGLM performs worst out of the three LLMs using O-Cue but better than

BELLE (especially at helpfulness) using M-Cue under the zero-shot setting, and then we

carefully check the outputs of these LLMs and found that ChatGLM almost fully ignore
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Model Prompt
Helpfulness Acceptness

Zhihu D4 PsyQA Zhihu D4 PsyQA
Zero-shot Setting

belle

O-Cue 67.40 76.34 69.31 55.82 52.50 53.43
M-Cue 81.54 71.60 79.25 60.23 72.41 73.65

chatglm

O-Cue 48.29 56.68 33.00 32.39 39.19 31.34
M-Cue 85.02 72.10 83.57 66.67 51.27 55.40

chatgpt

O-Cue 67.91 50.40 61.90 53.14 52.38 58.15
M-Cue 95.57 87.88 90.34 65.22 61.08 56.12

One-shot Setting
random selection

belle

O-Cue 64.31 50.53 65.15 53.35 40.07 53.81
M-Cue 83.30 69.59 73.81 73.61 56.14 61.90

chatglm

O-Cue - - - - - -
M-Cue 90.28 75.10 91.85 74.55 54.03 64.75

chatgpt

O-Cue 76.47 51.94 65.44 63.86 50.47 56.03
M-Cue 91.60 86.67 88.96 76.83 58.19 61.41

top-1 selection

belle

O-Cue 63.77 57.51 69.92 54.93 41.02 55.87
M-Cue 82.77 69.94 73.99 74.32 54.38 62.24

chatglm

O-Cue - - - - - -
M-Cue 89.25 77.26 91.77 73.43 57.17 58.74

chatgpt

O-Cue 76.86 50.93 55.85 59.63 52.02 57.58
M-Cue 93.19 88.84 91.77 78.46 56.84 59.48

Table 2.2: The win rate of responses generated by our method compared with the response with standard
prompting on three Chinese datasets in terms of helpfulness and acceptness. The underlined numbers mean
that there are about 160 to 280 valid responses out of 500 in this setting due to the input context limit of the
model.

the instructions in O-Cue and simply continue the dialogue. However, we found it can

follow instructions well in M-Cue, resulting in higher win rates. We attribute this to the

relatively more complex and longer instructions in O-Cue and poor complex-instructions

understanding of ChatGLM8. In addition, with the M-Cue method, we found that the

performance of all models on D4 is relatively worse than the other two datasets. We suspect

the reason is the longest length of context in D4. Moreover, we observe that the responses

generated by ChatGLM and BELLE under the one-shot setting are much better under the

8Thus, we do not report the one-shot results using O-Cue for ChatGLM.
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Model Prompt
Helpfulness Acceptness

Quora ED EMH Quora ED EMH
Zero-shot Setting

alpaca

O-Cue 19.51 39.41 49.70 22.85 35.41 50.15
M-Cue 80.78 87.30 85.76 78.21 86.00 86.97

vicuna

O-Cue 56.16 71.43 59.43 55.73 65.06 63.50
M-Cue 81.67 91.30 80.42 77.89 90.71 82.93

chatgpt

O-Cue 79.47 88.31 82.83 81.47 89.92 93.71
M-Cue 85.83 91.98 82.93 89.09 96.79 94.93

One-shot Setting
random selection

alpaca

O-Cue - - - - - -
M-Cue 76.78 85.08 94.36 72.34 85.07 95.82

vicuna

O-Cue 60.45 70.77 63.06 60.45 68.21 67.07
M-Cue 79.84 91.20 79.23 83.16 92.45 87.99

chatgpt

O-Cue 80.33 87.32 84.94 80.33 90.80 96.06
M-Cue 84.31 89.78 85.71 86.64 93.94 96.70

top-1 selection

alpaca

O-Cue - - - - - -
M-Cue 74.54 78.70 88.69 72.27 79.55 93.43

vicuna

O-Cue 63.10 71.75 62.31 62.04 67.21 67.76
M-Cue 78.70 90.12 79.10 82.08 92.96 88.96

chatgpt

O-Cue 81.15 87.42 81.40 80.24 89.92 91.84
M-Cue 88.08 91.37 86.87 91.21 95.95 96.12

Table 2.3: The win rate of responses generated by our method compared with the response with standard
prompting on three English datasets in terms of helpfulness and acceptness. The underlined dataset mean
that there are about 330 valid responses out of 500 in this dataset for all experiments due to the input context
limit of the model.

zero-shot setting, i.e., less general responses and more responses in line with the role,

benefiting from the informative demonstrations.

English LLMs. Table 2.3 shows the performance of English LLMs. Similarly, for the

zero-shot setting using O-Cue, we found that Alpaca hardly follows the instructions, which

often produces ambiguous outputs, mostly presenting user status and other times providing

the response without any indication9. Besides that, with the M-Cue method, due to the

9We do not report one-shot for Alpaca, too.
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Figure 2.4: The win rate of responses (acceptness) generated by chatgpt under different demonstration
selection strategies under one-shot setting v.s. responses under the zero-shot setting, using M-Cue CoT.

innate limitations of Alpaca, the win rate of responses is the lowest among all LLMs and

settings. In addition, English LLMs also perform worst on the dataset which has the longest

context length (Quora), in which ChatGPT and Vicuna tend to generate much longer

responses than Alpaca due to limit of max length.

2.4.4 Discussion and Analysis

In this section, we conduct an extensive analysis with the backbone as ChatGPT using

M-Cue CoT because of its superior performance in both Chinese and English10.

One-shot v.s. Zero-shot Figure 2.4 shows the direct comparison of responses generated

under different settings using M-Cue. There are 5 out of 6 datasets except for D4 in which

one-shot (both random or top-1 selection) beats zero-shot since the win rates all exceed 80%.

The suboptimal performance of D4 in the one-shot setting can be attributed largely to the

limitations imposed by the input length constraint. Furthermore, we can observe that top-1

selection achieves better performance than random selection in 4 out of 6 datasets, suggesting

users with similar statuses tend to like similar expression styles in responses. We attribute

10We present the results in terms of acceptness since this metric is more suitable for our motivation. We put
helpfulness analysis in the Appendix.
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Context

Status Planning

Response

User System

Figure 2.5: An example of multiple intermediate reasoning outputs for different roles: User and System in
in-depth dialogue questions.

the relatively lower performance of top-1 selection in D4 and Quora to the difficulty the

LLM encounters in attending to critical input components due to the lengthy context.

More Reasoning Steps We tried to introduce an additional step (Step 2) after user sta-

tus inference (Step 1): response planning by prompting the model to plan the response

considering the dialogue context and user status. Specifically, we prompt the model to

answer the following questions: "Based on the context of the conversation and the user status

such as personality traits, and psychological and emotional state, what aspects should the system

pay attention to when responding?" after giving the dialogue and user status. We regard the

output of LLMs as system planning p as shown in Figure 2.5, and thus there are three

different variants of M-Cue in the last step: ProcessA: c, s → r; ProcessB: c, p → r; and

ProcessC: c, s, p → r, in which ProcessA is chosen in our main experiment. Table 2.4 shows

the results. First of all, it is likely that adding more reasoning steps will improve the LLMs’

performance, but it is not necessary to assemble all intermediate reasoning results at the

last step, for example, variant ProcessB reaches a higher win rate than ProcessC with only

planning as an intermediate result. We emphasize the observation may not hold once the

LLM type is changed due to various long-context understanding and instruction-following

capabilities across them. As additional steps introduce extra input and extra computation

for the inference, making the few-shot unpractical.
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Method
Chinese English

Zhihu D4 PsyQA Quora ED EMH
ProcessA 65.22 61.08 56.12 89.09 96.79 94.93
ProcessB 76.15 55.82 57.72 89.79 98.78 97.62
ProcessC 75.91 57.23 58.74 94.50 98.57 98.22

Table 2.4: The win rate of different variants in terms of acceptness with the chatgpt as the backbone.

Step1: Provide knowledge via a hint

Step2: Ask a question to determine a student’s

understanding

Correction: The teacher corrects a mistake or 

addresses a misconception a student has.

Hint: The teacher provides knowledge to the student via 

a hint.

Question: The teacher asks a question of the student, 

which can attempt to determine a student’s 

understanding or continue the conversation.

Confirmation: The teacher confirms a student ‘s answer 

or understanding is correct.

Others: Refers to any strategy that does not fall within 

the predefined strategies.

Hint

Question

Box is scatola. Do you remember how to say 

the plant?

How do you say blue box in Italian?

Prepositional phrases separate the two 

noun phrases.

Is it e dentro la box blu?

Figure 2.6: Different conversational strategies as different internal cognitive tools in tutoring dialogue
system [1]

2.5 Incorporating More Cognitive Tools

2.5.1 Conversational Strategies

Individuals typically employ a range of conversational strategies, whether singly or in

combination, to furnish constructive and refined responses [62, 68]. As shown in Figure 2.6,

the tutoring dialogue systems need to seamlessly blend educational content with differ-

ent motivational strategies in single turn (e.g., hint → question) to optimize the learning

experience.

Inspired by recent progress that unleashes the cognitive synergist in LLMs with multi-

persona collaboration [69], we introduce a multi-persona framework: Think-Plan-Execute

(a.k.a, TPE), a novel prompting paradigm to enhance the planning ability of cognitive tools

for the dialogue system. Specifically, TPE involves a structured decomposition of the

overall planning process into three distinct phases, managed by three separate roles: Thinker,

Planner, and Executor. The Thinker reasons the internal status exhibited in the dialogue context
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considering the comprehensive linguistic cues underneath the multiple dialogue interactions

[49, 23], such as the user’s emotional states or preferences, and formulates a blueprint of

plans, serving as a global guideline for the Planner and Executor. The Planner needs to

generate specific and executable plans in a natural-language format to call different cognitive

tools (sources or strategies), while the content varies across tasks. The last Executor strictly

follows the thought of the Thinker and the plan of the Planner to execute, and assemble all

intermediate results to compose the final response.

In this way, our proposed method surpasses several competitive baselines, leading to

better performance and generalization across different datasets in various applications.

More details can be found in the original paper [1].

2.5.2 Self-Reasoning Language Models

After we successfully validate the effectiveness of these internal cognitive tools via prompt

engineering, one problem naturally appears: can we further utilize them to boost the

performance of LLMs via supervised fine-tuning?

Several prior studies have explored various approaches to get better CoT tuning datasets,

where most of them utilize either the LLM itself [70, 71] or external reasoning models [72]

to generate (or refine) new (or existing) responses in the instruction-tuning dataset, leading

to great improvements at various downstream tasks. Despite the effectiveness of these

proposed methods, they still face several limitations. On the one hand, most of them

focus on questions with verifiable answer such as math and code [26, 71], being infeasible

for general instruction-tuning dataset. On the other hand, another line of work typically

assumes access to more powerful models to refine each sample iteratively [72, 73]. Such

methods suffer from performance plateaus or even degradation [74] and are inherently

constrained by the capability ceiling of the powerful model.

To this end, we present Self-Reasoning Language Models (SRLM), which is capable to

self-unfolding its own reasoning rationales and iteratively optimize itself, leading to en-

hanced overall capability (as shown in Figure 2.7). Specifically, we first create only few
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Phrase 1: Reasoning Catalyst 
Acquisition Phrase 2: Self-Improved LLMs

Self-reasoning LLM

Base LLMs

Instruction-tuning Dataset
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New Instruction-

tuning Dataset
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tuning Dataset
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……
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Prompt
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Detail

…
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Figure 2.7: The framework of our proposed Self-Reasoning Language Models, which consists of two phrases.
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Figure 2.8: The performance of Self-Reasoning Language Models (SRLM) across five different benchmarks,
along with the average performance (Avg.). We report the best performance during the five iterations for each
selector. We also run significant test which showcases our method significantly outperforms the reflection-
tuning with p < 0.05.

reasoning catalyst data that compose the demonstrations of how to enrich shorter CoT

rationales into more longer and comprehensive CoT with the augmentation of various

internal cognitive tools. After incorporating the reasoning catalyst data with the original

instruction-tuning data, the tuned model not only inherit the basic reasoning capabilities

from the instruction-tuning dataset, but also learn how to refine reasoning simultaneously,

resulting in Self-Reasoning Language Models. Consequently, the SRLM can refine its own rea-

soning rationales at each iteration with the processing of reasoning expansion and selection.

During this process, the model generates enriched reasoning rationale candidates for the

same instructions in the original instruction-tuning dataset. These rationale pairs are then
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Figure 2.9: The performance of the baseline and our proposed SRLM (M3 with length selector) different
sampling times ranging from 1 to 64 (i.e., 1, 2, 4, 8, 16, 32, 64) on five various benchmarks and the Avg.
performance.

filtered and selected using three proposed selectors without any prior assumption about the

instruction and answer. Finally, the newly selected instruction-tuning dataset is combined

with the reasoning catalyst data to create the training data for the next iteration of SRLM,

which is initialized from the same base model.

In this way, our proposed SRLM achieves an average absolute improvement of more

than +2.5 points across five reasoning tasks: MMLU, GSM8K, ARC-C, HellaSwag, and BBH

on two backbone models (Figure 2.8). Moreover, it brings more improvements with more

times of sampling during inference, such as absolute +7.89 average improvement with 64

sampling times (Figure 2.9), revealing the in-depth, diverse and creative reasoning paths in

SRLM against the strong baseline. More details can be found in the original paper [19].

2.6 Summary

In this chapter, we first build a benchmark to evaluate the helpfulness and acceptness of

responses generated by current LLMs, considering three major linguistic cues of user

statuses. We then propose a Cue-CoT to trace the status of users, decomposing the response

generation into multiple reasoning steps. Experimental results demonstrate the superior
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performance of our method on 6 datasets under both zero-shot and one-shot settings.

Besides that, we further explore more internal cognitive tools in dialogue system by

introducing Think-Plan-Execute (TPE) prompting paradigm, which operationalizes multi-

persona collaboration to simulate compositional planning and execution in dialogue systems.

Based on these insights, we present Self-reasoning Language Models (SRLM), a novel fine-

tuning framework that enables LLMs to iteratively improve their reasoning quality by

leveraging internal cognitive tools to generate richer, deeper, and more creative rationales.

Together, these contributions highlight a promising direction for enhancing the epistemic

capabilities of language models by treating internal cognitive tools not merely as passive

artifacts of pretraining, but as active components in both generation and learning. This dual

perspective, prompt engineering and supervised fine-tuning, paves the way toward more

adaptive, insightful, and self-improving LLMs.
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Chapter 3

SAFARI: Building Agents with

External Physical Tools

3.1 Introduction

Besides internal cognitive tools, there are lots of external physical tool in the real world,

such as calculators, search engines, models, and even physical robots [75, 76]. These tools

serve as important extensions for static LLMs, enabling them to interact more dynamically

with the external world. This integration not only addresses key limitations, such as the

inability to access up-to-date information, but also unlocks the potential for LLMs to tackle

more complex, interactive, and real-world tasks.

Figure 3.1 illustrates several representative types of external physical tools, including

search engine [27], function calls [13], program executor, and even different atomic actions

used by embodied agents. Notably, the functionality of certain external tools may overlap

with that of internal cognitive tools, while others serve as complementary resources. For

example, when presented with a factual question, an LLM might either (i) rely on its internal

parametric knowledge to answer it via chain-of-thought reasoning (i.e., generate-then-read),

or (ii) first retrieve relevant information from an external search engine and then generate

the answer (i.e., retrieve-then-read). We will explore such trade-off in detail in later chapters.
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External Physical Tools as a bridge to connect LLMs with external environments

LLMs Environments

…
…

External 

Tools

…

Figure 3.1: Some representative external physical tools, serving as a bridge to connect LLMs with external
environments, including models at Huggingface, code repositories in Github and lots of other external tools.

In this chapter, we alternatively focus on the second case that the external physical tools

mainly provide supplementary resources, bolstering LLMs’ capacity to integrate domain-

specific knowledge and enhance their generation capability. Specifically, we starts with one

typical external physical tools – search engine (or more generally, a retriever), to empower

the LLMs to dynamically call different sources of knowledge (i.e., user memory and private

databases) in the context of dialogue system. We then introduce several learning frameworks

that enable LLMs to call external tools more effectively and efficiently by learning from both

demonstrations and interactions.

3.2 Related Work

Knowledge-grounded DS. To build a persona-consistent dialog agent, Zhang et al. [60]

extensively investigates this task with a new dataset Persona-Chat, where a pre-defined

persona set is a form of multiple sentences of textual description. Lots of works follow this

setting and have taken mutual persona perception [77, 78], persona-sparse scenario [35, 79],

long-term persona memory [80], and persona extending [81] into consideration. Although

some of them complement the insufficient semantics in short persona descriptions by further

utilizing an external commonsense knowledge base to extend existing persona sets [81],

they still fall into the conventional framework coupling the knowledge selection with the
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response generation [82], rendering it infeasible to handle various sources of knowledge.

There have also been works showing that the combination of different knowledge sources

such as persona descriptions and Wikipedia can further improve the overall performance [68,

83]. But they still fail to capture possible dependency between knowledge sources. In

their framework, knowledge is not used as the role to assist persona-consistent response

generation, but as an additional resource to generate a more informative response or select

a suitable persona [68, 84].

LLM for Planning. Large Language Models (LLMs) show remarkable capabilities in

planning the use of various external resources, such as tools [85], models [86], and APIs [13],

to solve various NLP tasks and suit different applications in practice. Alternatively, different

types of knowledge can be retrieved from external sources, as illustrated in WebGPT [87] and

ReAct [11]. Integrating various knowledge sources to improve the quality of LLM generation

becomes increasingly challenging due to the need for strategic planning, sequential decision-

making, and complex reasoning. Previous research primarily focuses on either earlier

decision-making stages [86, 87] or the subsequent response generation [85, 88], instead of

establishing a complete framework for planning the use of multiple knowledge sources to

generate appropriate responses.

3.3 SAFARI: LLMs as Tool Planner in Agentic RAG

3.3.1 Overview

Knowledge enhancement techniques [89] have significantly empowered machines to deepen

their understanding of the underlying knowledge in open-domain dialogues [90], surpassing

what can be solely acquired from conversational corpora. Recent years have witnessed

various open-domain dialogue systems relying on different types of knowledge sources,

such as external documents (e.g., Wikipedia) [91, 92], persona [36, 60], user memory [80, 93],

and more. Realizing the limitations of using single-source knowledge, some latest studies

further develop dialogue systems with access to multi-source knowledge [68, 82, 83].
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你好呀，我来自安徽，你是哪里人呀？

Hello, I am from Anhui province, which province are u from?

Sources
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非常高兴认识你，我是广东人。

Nice to meet you, I am from Guangdong province.
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Persona Config Local Knowledge User Memory
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Results
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Hi, what is your favorite food?
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fruits and vegetable 
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(a) Dependency between Multiple Sources (b) SAFARI Framework

NULL

你是南方人还是北方人？

南方人，我来自华南地区。

你平时攀岩吗？

不敢去，我恐高

那你会不会唱歌？

太难了，我只会听

Are you from the south or north of China?

South of China.

Do you usually rock climb?

No, I am too scared of heights of climb.

Can u sing the songs?

Used Persona Used KnowledgeP1 P1-K1

It’s too difficult, I can not.

Used Persona Used KnowledgeP3 P3-K1

Used Persona Used KnowledgeN N

Foshan belongs to the region of South China.

我是佛山人

我有恐高症

I comes from Foshan.

I have acrophobia

PERSONA

DOCUMENTS {P1: K1, …K5, …, P3: K1,… }

有恐高症的人无法爬山攀岩，无法做飞机
看窗外 People who have acrophobia can
not climb mountains and rock climbing.

P1

P3

K1

……

佛山的所属地区是中国华南地区

K1

……

……

P1

P3

Persona Config

(c) An example of KBP dataset

……

Figure 3.2: (a) An example of dependency of two sources involved in the persona-consistent dialogue system
(PERSONA and DOCUMENTS); (b) our proposed SAFARI framework to plan, retrieve, and incorporate multiple
sources of knowledge: PERSONA, DOCUMENTS, and so on. Planning, Retrieval and Assembly steps are
divided by dashed lines; (c) A sample from the KBP dataset. There are three situations of responses in our
datasets: 1) response without the need for any sources (NULL), 2) response using only personae description
(from PERSONA source), and 3) response using both persona and knowledge (from PERSONA, DOCUMENTS
sources). The example here presents the first and third situations. We highlight the response and used
knowledge with the same color.

Despite the effectiveness of existing works to enrich the dialogue responses with multi-

source knowledge, they typically design models to incorporate all sources indiscriminately,

resulting in a cumbersome process that struggles to handle cases dependent on the inter-

action between some specific sources instead of all [82, 84]. Moreover, the importance of

comprehending the potential dependency between knowledge sources is overlooked in

previous works, which may result in generating paradoxical responses [68]. For example,

humans often express their persona with the assistance of external knowledge. As shown in

Figure 3.2(a), for responding to the question "Hi, what do you like to eat?", it is inadequate to

only incorporate single-source knowledge from user persona, e.g., "I am a vegetarian", since

relevant information from external documents is also required, e.g., Vegetarian (Vegetarians

like to eat fruits and vegetables). However, being unaware of the dependency between these

two different sources of knowledge (persona and documents), dialogue systems may select

the document implying inconsistent personas (e.g., "Food contains meat, fruits, ..."), leading

to responses conflicting with defined personas (e.g., "I like to eat meat"). Therefore, it at-

taches great importance in modeling the interaction and dependency of different sources in

building knowledge-grounded dialogue systems.
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In order to address the interaction and dependency issue between specific sources, we

propose a novel framework, named Source plAnner For personAlized knowledge-gRounded

dIalogues (SAFARI). Seeing the potential of large language models (LLMs) in planning the

use of external information [85, 86], we explore LLMs’ capability of connecting different

sources in the context of the personalized knowledge-grounded dialogue system. As

illustrated in Figure 3.2(b), the whole response generation can be modeled into three steps

in SAFARI: 1) Planning to make a series of decisions of whether to use a specific knowledge

source by regarding each knowledge source as a external tool, given the relationship

descriptions between different sources; 2) Retrieval to retrieve top-n results from external

databases according to the decisions; 3) Assembling to incorporate all retrieved knowledge

into the final response generation. Benefiting from decoupling source selection and response

generation, our framework is more flexible and scalable, allowing independent modification

of each component. Additionally, our framework can easily accommodate scenarios where

multiple or no sources are required. To sum up, our contributions are listed below:

• We propose the SAFARI framework to augment the dialogue system to plan and incorpo-

rate multiple sources of knowledge into responses, and further address the knowledge

dependency issue between sources in both supervised and unsupervised manner by

leveraging LLMs.

• We build a personalized knowledge-grounded dialogue dataset, KBP, where the re-

sponses are conditioned on multiple sources of knowledge, leading to more user-engaged

dialogues with informative and persona-consistent knowledge.

• We conduct exhaustive experiments to validate the effectiveness of our proposed frame-

work to incorporate multiple sources and capture the dependency between them.

3.3.2 Task Definition

We first provide a general definition of a dialogue system that requires multiple sources

and then we instantiate the definition in the context of personalized knowledge-grounded
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dialogue. For each dialogue, the dialogue context c = {u1, s1, u2, s2, ..., ut} and different

knowledge sources K = {K1, K2, ..., Ki} are provided, where Ki = {k1
i , k2

i , ..., kj
i} indicates the

ith source’s name of K. kj
i denotes the jth knowledge in natural language from Ki. If K2 is

reliant on K1, knowledge should be retrieved from K2 based on the selected knowledge in

K1. Such reliance should also be embodied in the construction of K2, in a way such as K2 =

{k1
1 : {k1

2, k2
2}, k2

1 : {k3
2, k4

2}, ...}. The goal of the system is to generate a response st conditioned

on c and a set of knowledge {kj
i, ..., km

n } retrieved from K if required1. Specifically in the

context of personalized knowledge-grounded dialogue, we regard {PERSONA,DOCUMENTS}

as {K1, K2} respectively. There is a potential dependency between these two sources, and

the goal is to generate a response st conditioned on a set of knowledge {pj
i , ...kn

m}, where pj
i

is retrieved from PERSONA and kn
m is retrieved from DOCUMENTS. The response can also be

generated conditioned on a set of knowledge from a single source PERSONA or without any

sources.

3.3.3 Supervised SAFARI

There are three different steps in our proposed SAFARI framework: Planning, Retrieval,

and Assembling as shown in Figure 3.2(b). We will introduce them step-by-step under both

supervised and unsupervised settings.

Planning The goal of the planning step is to make a series of decisions to decide whether

or not the corresponding source of knowledge is required and determine their call order if

needed. Since the dependency relationship is previously known, we only need to make sure

that a certain knowledge source is called after the sources it depends on. Thus, we formulate

this task as sequence-to-sequence generation by directly outputting either required sources

in execution order or NULL if the response does not need any knowledge as follows:

M : c → Ki, Kj, ..., Kn or NULL, (3.1)

1Unlike most of the previous works, we also consider the response that does not need any knowledge in
our setting.
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Large Language Models（LLMs)

Dialog History

Selected Sources: PERSONA DOCUMENTS

Retrieved ResultsPERSONA DOCUMENTS

System Response

Step 1: Planning Step 3: Assembling

PERSONA DOCUMENTS

Retrieved Results

Step 2: Retrieval

Retriever

Figure 3.3: The supervised framework of SAFARI for personalized knowledge-grounded dialogues. We use
different colors to indicate different steps. The black arrow denotes the flow of data without the involvement of
LLM.

where M is parameterized by LLMs. We add Ki, ..., Kn and NULL into the vocabulary of

LLMs as special tokens. Besides that, we add other special tokens to indicate the different

parts of the input, i.e., [SOURCE] and [EOS] to indicate the start and end positions of

sources. In this way, LLM can model the dependency between different sources and learn

when and how to call certain sources.

Retrieval According to the output of the last step, there are two cases in this step: (1)

the response does not need any external sources of knowledge, and the agent can skip

this step; (2) the response needs multiple sources of knowledge, and the agent strictly

follows the output source order to retrieve top-n related knowledge k∗i for the ith knowledge

source according to the dialogue context c, and if there is a dependency here, it will

use preceding retrieved results k∗j in the planned execution order as a filter. Specifically,

assuming the output order is PERSONA, DOCUMENTS in the planning step for a persona-

consistent dialogue system, we first retrieve top-1 result p∗ from PERSONA, and then we

retrieve k∗ from DOCUMENTS according to c and p∗. Here the utilization of p∗ depends on

the systematic design. For example, if there is a designated source K∗ for each p∗ (a.k.a

dependency), we can simply retrieve k∗ from K∗. And there is another case where all

knowledge is stored together and we can concatenate c and p∗ as a query in the retriever.
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R : Ki, Kj, ..., Kn → kj
i , ..., km

n (3.2)

Assembling We concatenate all preceding results together with the dialogue context c to

generate the response:

M : Inp → st, (3.3)

where Inp = {c [SOURCE]Ki, ..., Kn[EOS][MIDDLE]kj
i, ..., km

n [EOM]}. [MIDDLE] and

[EOM] represent the start and end positions of retrieved results. Forming the input in

this way has two advantages. Firstly, the name of the sources indicates the type of results

retrieved, which provides more signals to the LLMs. Secondly, it allows us to train the

language model in a multi-task manner using teacher forcing. The loss is only calculated on

tokens related to the planning and the response as shown in Figure 3.3. We first predict the

planning and then generate the response according to the preceding results when inference.

3.3.4 Unsupervised SAFARI

Inspired by the recent progress using LLMs as a controller to plan a call order of different

models [86], we adopt a similar way here by providing detailed prompts to leverage the

LLMs’ capability to address the dependency between different knowledge sources. We

consider two settings: zero-shot and in-context learning for planning and assembling steps

here since the retrieval step is the same as above.

Planning. Instead of directly providing supervision signals, we provide a description for

each source of knowledge, accompanied by the corresponding dependency between the

sources. The prompts are shown in Table 3.1.

Assembling. We feed the dialogue content and the retrieved knowledge into the prompt as

organized in Table 3.2, adapting LLMs to generate responses according to dialogue context

and retrieved results.
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There are different knowledge bases storing
relevant information:
K_1: {K_1_DESC}
K_2: {K_2_DESC}
......
There exists a dependency between these
knowledge bases. {DEPENDENCY_DESC}
Here is the dialogue between the user and the
system: {DIALOGUE}
Based on the user’s last question, please deter-
mine if it requires invoking the corresponding
knowledge base. If the invocation is necessary,
output the names of the knowledge bases in the
order they should be invoked. If no invocation
is needed, output NULL.

Table 3.1: The zero-shot prompt of unsupervised SAFARI at planning step (translated from Chinese to
English).

The dialogue is as follows:
{DIALOGUE}
The following knowledge is retrieved from dif-
ferent sources of knowledge bases:
{MIDDLE_RESULTS}
Please play the role of the system and generate
a reply according to the context of the dialogue
and given knowledge. Please make sure your
reply is consistent with the given knowledge. If
the provided knowledge is NULL, generate a
response solely based on the dialogue context.
System:

Table 3.2: The zero-shot prompt of unsupervised SAFARI at assembling step (translated from Chinese to
English).

The full prompts of the unsupervised planning step can be found in the original paper.

For few-shot in-context learning, we prepend three corresponding demonstrations from the

train set to the zero-shot prompts during evaluation.

3.4 Knowledge Behind Persona Dataset Collection

In this section, we detailedly introduce the process of data collection and statistics of the

collected data. The data collection process can be divided into two steps: Step 1. Persona
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and Knowledge Acquisition and Step 2. Dialog Collection.

3.4.1 Persona and Knowledge Acquisition

Seeds Preparation. To reduce annotation cost, we take advantage of the currently available

persona dialogue dataset: DuLemon [80] and two widely-adopted Chinese knowledge bases:

Baike2 and Ownthink3 to produce seed data. Specifically, we first cluster all persona

sentences from DuLeMon into 10 topics. After removing duplicate, rare, and similar

personas, we carefully choose around 20 personas for each left topic as seed personas4.

In addition, we manually add some personas for the existing topics and new topics. The

final personas consist of age, nation, personality, career, movie, music, sport, book, constellation,

locality, gender, others. For retrieving persona-related knowledge, we simply combine two

aforementioned knowledge bases with similar filtering operations and store them as (head

entity, attribute, tail entity) tuples.

Persona and Knowledge Matching. For each persona sentence, we segment it into a

sequence of words with a Chinese word segmentation tool jieba5. If any words exactly

match the head entity or tail entity of a certain knowledge tuple, we transform the tuple into

a sentence according to pre-defined templates and then save it as one knowledge for this

persona sentence. In this way, we can obtain various knowledge for each persona sentence.

Consistent with previous works [60], we randomly sample 3 persona sentences along with

5 knowledge sentences per persona to form a persona description of the system for each

dialog.

2http://www.openkg.cn

3http://github.com/ownthink/KnowledgeGraphData

4Some topics are removed if they contain less than 20 personas. We don’t pick hundreds of personas because
one persona sentence has a vast amount of knowledge behind it.

5https://github.com/fxsjy/jieba
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3.4.2 Dialogue Collection

Collection Setting. Following the previous setting [68], annotators are instructed to make

a dialogue by considering persona and corresponding knowledge under the single-person

setup. In this way, one person can better understand what persona to ask as the human

and what knowledge to use as the system, in comparison with two independent persons

playing two roles separately. During the collection, each annotator first selects a suitable

persona and then optionally identifies relevant knowledge, giving a knowledge-enhanced

and persona-consistent response at last.

Training and Pilot Annotation. All annotators are first required to take a training tutorial

to learn the annotation procedure, requirements, and examples of annotated dialogues.

Afterwards, they are given 30 personas to make 10 dialogues. We provide corresponding

feedback to help them adjust their annotation criteria. To establish the necessity of persona-

knowledge dependency, we consider the situation where the response will be persona-

inconsistent without the assistance of knowledge. To this end, annotators are requested to

ask questions centered on the implications based on knowledge and persona. For example,

the annotator is supposed to ask "Which province are you from?" instead of "Which province does

Shenzhen belong to?", given the persona "I live in Shenzhen" and corresponding knowledge

"Shenzhen belongs to Guangdong province".

Batch Collection. After pilot annotation, we conduct dialogue collection batch by batch

and regularly coach the quality of collected data6. For each batch, we sample personas

different from previously annotated dialogues to increase its diversity in the whole dataset.

The addition, deletion, and revision of persona and knowledge are also accepted and

updated at the batch level7.

6We write a python script to check typos (e.g. the labels of used knowledge is not exist in given knowledge
bases) and provided feedback after each batch.

7The annotators must check for persona conflicts and refrain from relying too much on single knowledge.
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KBP Train Valid Test
# dialogues 1,981 248 248
# samples 9,821 1,227 1,229
# avg turns 4.96 4.93 4.96
# utterances 19,642 2,454 2,458
# avg length 17.6 17.3 17.5
# resp w/ persona 86.1% 84.4% 85.3%
# resp w/ p_and_k 76.3% 74.2% 75.1%

Table 3.3: Statistics of KBP dataset.

Grounding Annotation. We also gather the labels of grounding knowledge sources for

the system’s responses by asking the annotators to specify the sources they draw from

while providing responses, such as PERSONA or DOCUMENTS. For instance, generating a

response may rely on persona alone or both persona and knowledge. With the labels of

these grounded sources, the planning abilities of the dialogue systems can be quantitatively

measured.

3.4.3 Statistical Analysis

We organize the collected personas (PERSONA source), persona-related knowledge 8 (DOCUMENTS

source), and dialogues in the form shown in Figure 3.2(c). We finally collect 2,477 dialogues

and 24,554 utterances with 5 turns per dialogue on average. We then split the collected data

into train, validation, and test sets using the 8:1:1 ratio. The dataset statistics are summarized

in Table 3.3, including the number of dialogues, utterances, average length, as well as data

sources used. The average length per utterance reaches 17.6, hinting at the informativity and

depth of the conversation. It is shown that over 86% of responses used persona (i.e., resp w/

persona) and 76% used both persona and knowledge (i.e., resp w/ p_and_k), which shows

that KBP is capable as a benchmark to evaluate the different grounding abilities of models.

8The knowledge related to the same persona forms a document, and different documents form DOCUMENTS
source.
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3.5 Experiments

3.5.1 Setup

Evaluation Metrics. During the evaluation, we use different metrics at different steps.

We use F1 for planning, Recall@1 for retrieval, and BLEU [94], Rouge-L [95], P.C, K.C for

assembling, in which P.C and K.C are calculated using our finetuned NLI models [96].

Implementation Details. We mainly choose BELLE-LLAMA-7B-2M [65] and ChatGLM-6B

[64] as two backbone models for supervised setting since they are two popular open-

source Chinese models. And we additionally add ChatGPT (gpt-3.5-turbo-0301)9 for the

unsupervised setting. For training, we set the batch size as 8, train models with 3 epochs

and save the checkpoint with the lowest validation loss. For other hyper-parameter settings,

we mainly follow the corresponding official code10. Due to the computation limit, we

conduct training with LoRA [97] at one single 3090 GPU, and it cost about 4-6 hours. For the

unsupervised setting, we set both the temperature and top p as 0.1 to reduce the randomness

of LLMs. Besides that, we use three types of retrievers including both sparse and dense

retrieval: BM25 [98], DPR [99], and RocketQAv2 [100]. We only retrieve the top-ranked

result from each source in the experiments.

3.5.2 Performance of Planning

There are three types of decisions representing different sources required in the next

step: NULL, PERSONA, and Both (selecting both PERSONA and DOCUMENTS). Table 3.4

demonstrates the F1 of planning under different settings. Under supervised settings, despite

LLMs achieving high F1 scores at Both, the performance at NULL and Persona is still

unsatisfactory, since there are fewer training samples in these two cases.

On the other hand, under unsupervised settings, the LLMs are over-confident in their

9https://openai.com/blog/chatgpt

10https://github.com/THUDM/ChatGLM-6B and https://github.com/LianjiaTech/BELLE
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Model NULL Persona Both

Supervised
belle-llama-7b-2m 42.67 (194) 14.08 (17) 83.77 (1018)
chatglm-6b 47.10 (129) 31.96 (69) 86.59 (1031)

Unsupervised
Zero-shot
belle-llama-7b-2m 28.55 (940) 8.94 (54) 32.47 (235)
chatglm-6b 25.60 (1225) 0.0 (0) 0.43 (4)
chatgpt 11.45 (116) 20.67 (233) 74.88 (880)
In-context
belle-llama-7b-2m 9.22 (36) 18.21 (1193) 0.0 (0)
chatglm-6b 25.67 (1190) 1.49 (9) 4.62 (30)
chatgpt 27.95 (699) 23.14 (238) 41.98 (292)

Table 3.4: The F1 of different decisions in Planning of different LLMs under supervised/unsupervised settings.
We also report the frequency of different decisions in the bracket. There are 181 NULL, 125 PERSONA and 923
PERSONA, and DOCUMENTS in the ground planning.

decisions to use NULL, and they misunderstand the dependency between different sources

(sometimes deciding to only use DOCUMENTS without PERSONA)11.

This result reveals the LLMs’ low accuracy in expressing uncertainty and fetching

unknown knowledge. Furthermore, in-context learning cannot improve this situation, which

is similar to the observation in Amayuelas et al. [101].

3.5.3 Performance of Retrieval

With the ground-truth planning labels (except NULL), we examine three types of retrievers,

including BM25, RocketQAv2, and DPR, to evaluate the retrieval performance. Table 3.5

presents the Recall@1 (R@1) of the different retrievers. We found that the DPR and Rock-

etQAv2 can achieve over 80% R@1 when retrieving from PERSONA source while only about

50% from DOCUMENTS and the R@1 at DOCUMENTS† further decreases after removing the

dependency. First, the semantics between different knowledge from DOCUMENTS with the

dependency are similar to the same underlying persona p∗, making them more difficult to

be distinguished. In addition, noisy knowledge sentences are introduced since there exists

no dependency.

11We assign the case that LLMs predict DOCUMENTS only as NULL since this case does not exist in KBP.
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Model Persona
Both

PERSONA DOCUMENTS DOCUMENTS†

BM25 36.80 48.97 15.05 11.37
RocketQAv2 80.00 92.31 50.49 35.75
DPR 83.20 93.07 51.67 39.33

Table 3.5: The performance of Retrieval of different types of retrievers. There are 125 examples that
only require PERSONA and 923 require both PERSONA and KNOWLEDGE. We also report the Recall@1 of
DOCUMENTS without dependency (DOCUMENTS†).

Moreover, we observe that DPR performs the best out of these three retrievers in all

sources of knowledge while BM25 performs worst12, revealing the importance of dense

retrieval models in this task. Therefore, we set DPR as the retriever in our experiments

afterward.

3.5.4 Performance of Assembling

Table 3.6 demonstrates the performance of response generation under both supervised and

unsupervised settings.

Referring to Table 3.4, the performance of the planning step largely affects the results

in the assembling step, when the retriever is the same. Mostly, better planning leads to

better responses in all metrics. The supervised models are much better than unsupervised

models since their planning results are much better, while ChatGPT performs best under

unsupervised settings due to a similar reason. We found that BELLE achieves higher BLEU1

and Rouge-L, K.C but lower P.C than ChatGLM since the planning gap between them

mainly comes from PERSONA. In addition, due to poor retrieval performance at DOCUMENTS

(Table 3.5), the consistency score K.C is also much lower than P.C.

With demonstrations in the prompt, we observe generally better performance on most

metrics, since LLMs tend to accept the personalized role, rather than generating responses

like “As an AI language model, I do not have persona ....”. Overall, we conclude that the ground-

ing ability of supervised models is much better than unsupervised ones, and ChatGPT

12RocketQAv2 is generally not competitive with DPR because of the pre-trained weights in the RocketQAv2,
since it is pre-trained using QA datasets and the length of the question is much shorter than dialogue context.
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Model BLEU1 Rouge-L P.C K.C
Supervised Setting

belle-llama-7b-2m 30.48 34.61 75.34 46.62
chatglm-6b 24.59 27.18 76.99 42.39

Unsupervised Setting
Zero-shot
belle-llama-7b-2m 11.84 19.24 30.59 27.34
chatglm-6b 6.18 14.50 14.73 24.73
chatgpt 12.06 24.44 73.47 38.00
In-context
belle-llama-7b-2m 19.51 22.25 72.98 24.89
chatglm-6b 13.74 19.69 16.92 24.89
chatgpt 16.03 25.62 46.38 35.56

Table 3.6: The performance of Assembling under supervised/unsupervised settings.

Model BLEU1 RougeL P.C K.C
chatglm-6b 23.81 26.70 76.99 42.39

+ Ground Planning 24.29 27.01 86.16 57.12
+ Ground Retrieval 25.86 29.15 79.52 53.95
+ Ground P & R 25.71 29.43 90.56 72.99
- Dependency 23.32 25.53 75.67 38.49
- Documents 23.06 25.34 75.91 36.53
- Planning∗ 23.51 25.98 72.90 24.89
- Planning∗∗ 23.69 26.81 71.60 34.91

Table 3.7: Ablation study on the impact of different steps and modules in SAFARI.

performs best under the unsupervised setting.

3.5.5 Discussion and Analysis

In this section, we analyze the effects of different components and the choice of the number

of retrieved results, based on ChatGLM under the supervised setting. In addition, we

conduct human evaluations to verify the quality of automatic evaluations.

Impacts of Different Steps. We investigate the effects of individual steps by providing the

model ground-truth labels from each step to generate the response, enabling us to analyze

and understand the specific effects of each step in a clear and systematic way. Table 3.7

presents the results. First, we note that the inclusion of ground-truth planning labels or
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Number
Assembling

BLEU1 RougeL P.C K.C
1 23.81 26.70 76.99 42.39
2 22.70 25.57 71.03 29.45
3 20.69 24.05 69.73 27.91

Table 3.8: The performance of Assembling of different number of retrieved results.

knowledge casts a positive impact on performance. Planning primarily enhances P.C and

K.C, while grounding knowledge contributes to BLEU1 and Rouge-L scores. The best

results are obtained when both signals are combined. Secondly, we also conduct an ablation

study by removing some modules: 1) removing dependency information (-Dependency);

2) removing DOCUMENTS and only using PERSONA (-Documents); and 3) removing the

planning step by always selecting PERSONA (-Planning∗) or always selecting PERSONA and

DOCUMENTS (-Planning∗∗) for each turn. It can be found at the bottom of Table 3.7 that

all metrics are dropped differently after removing different components except for Rouge-

L when always selecting two knowledge sources. To conclude, SAFARI can effectively

incorporate multiple sources (compared with -Documents) and further address dependency

issues (compared with -Dependency). Moreover, SAFARI demonstrates its versatility by

effectively handling multiple sources and efficiently selecting relevant ground knowledge.

Notably, SAFARI outperforms existing methods that indiscriminately utilize all available

sources (compared with -Planning∗∗).

Different Numbers of Retrieved Results. The number of retrieved results plays a key

role in the response generation. There is a trade-off between accuracy and recall, while

a small number of retrieved results may not cover enough semantics but a large number

may introduce additional noises. Table 3.8 presents the results of the different numbers of

retrieved results. We observe that the performance of response generation decreases with

the number, which indicates that noisy knowledge will harm the quality of the generated

responses.
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Model Coh. Per.Cs (%) Know.Cs (%)
Supervised Setting

belle-llama-7b-2m 4.38 72.0 63.8
chatglm-6b 4.06 68.0 59.1

Unsupervised Setting
Zero-shot
belle-llama-7b-2m 2.84 24.7 19.5
chatglm-6b 2.58 17.0 14.8
chatgpt 4.00 63.4 33.3
In-context
belle-llama-7b-2m 3.36 40.0 21.7
chatglm-6b 2.88 32.0 28.9
chatgpt 4.03 54.0 48.8

Table 3.9: The results of human evaluation. The inter-agreement is about 86%.

Human Evaluation. Human evaluation is conducted to evaluate the quality of generated

response in terms of three metrics: coherence score (Coh.), persona consistency score

(Per.Cs), and knowledge consistency score (Know.Cs). We randomly sample 100 responses

with grounding information for each model and ask three annotators to indicate its co-

herence score (1-5) and whether the response is consistent with the given persona (1/0),

and knowledge (1/0). Table 3.9 shows the result. We observe that supervised methods

achieve higher performance than unsupervised ones, which corroborates the findings of the

automatic evaluation results presented in Table 3.6. Besides that, we found BELLE achieves

the highest performance across all metrics and outperforms ChatGLM since the effects

of planning are not considered during human evaluation. Moreover, we also found that

in-context learning brings a lower rejection rate and more human-like responses. Specifically,

the rejection rate of BELLE under the setting of zero-shot learning is about 32%, while the

number is reduced to 12% under in-context learning.

3.6 Learning of Tool Planning

There are two major ways to teach the LLMs to use various external physical tools: 1)

learning from demonstrations; and 2) learning from interactions. Each paradigm provides

complementary strengths for different stages of tool-use capability development.

49



3.6.1 Learn from Demonstrations

Similar to how humans can acquire new skills by observing examples, LLMs can also

learn tool-use behaviors by memorizing curated demonstrations. This learning paradigm

typically relies on high-quality examples, either from human annotations or model-generated

traces, and enables the model to generalize tool-use patterns via prompting engineering or

supervised fine-tuning without requiring real-time feedback.

Prompting Engineering. Most of previous methods fall into this category either use zero-

shot prompting or in-context learning, to guide the model’s behavior through carefully

designed input templates or few-shot examples without modifying model weights [13].

Usually, It is required to provide detailed description about the tool, such as name and

description, in order to help LLMs to quickly understand what the tool can do and how it

can be used. Additional few-shot examples can optionally be included to illustrate specific

tool usage scenarios, similar to the approach used in unsupervised SAFARI. While this

approach requires no parameter updates, it heavily depends on the quality and relevance of

the prompt examples, and may not generalize well beyond the demonstrated patterns.

Supervised Fine-tuning. To further improve the tool planning capabilities of LLMs, it is

always a option to collect high-quality data and finetune the model accordingly [102, 14,

103, 104]. For example, WebShop [105] offers a web-based interactive environment where

an agent can browse and purchase products. By leveraging behavior cloning, agents trained

in this setting demonstrate non-trivial performance in selecting the correct product based

on human instructions. In a related line of work, Gou et al. [102] introduce TORA - a suite

of Tool-integrated Reasoning Agents designed to tackle complex mathematical problems by

seamlessly combining natural language reasoning with external tools, such as computation

libraries and symbolic solvers. Although supervised fine-tuning can significantly improve

performance, its one-size-fits-all nature prevents the model from developing its own tool-use

policy tailored to its capabilities and the complexity of the task, thereby limiting its ability
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System actionUser action

Sigmoid layer

Policy Learning

User
Simulator

𝑠

Local Dense Reward Expert Demo

Dialogue State
Tracking

𝑎!, 𝑟

𝑎"

𝑠

… …

BERT
[CLS]

Figure 3.4: Our proposed method: Integrating pre-trained language model into reinforcement learning as
reward model to provide local dense reward signal.

to generalize well [106].

3.6.2 Learn from Feedback

Recent advances in LLMs have demonstrated impressive reasoning capabilities when fine-

tuned via reinforcement learning (RL) with simple rule-based rewards [26]. Therefore recent

efforts have sought to extend RL to tool use policy of LLM by leveraging rule-based rewards

tied to final answer correctness [27, 107]. One of the most notorious problems of RL is the

reward sparse issue, where here the agent usually receive a positive (or negative) reward

signal when the trajectory ends successfully (or unsuccessfully). Thus, the reward signal

is delayed and sparse, making it extremely difficult to connect a long series of actions to a

distant future reward especially for long-horizon planning tasks [108]. In order to provide

dense reward signals, we directly integrate a pre-trained language model as a discriminator

to judge whether the current action is good enough given current state (i.e., next action

prediction), and then the trained discriminator can give an extra local dense reward to guide

the agent’s exploration [109], as shown in Figure 3.4.

Beyond reward shaping, long-horizon planning introduces another significant challenge:

long-context understanding and management. Due to the inherent limitations of LLMs’
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maximum context windows, maintaining coherent decision-making across long sequences

remains a fundamental bottleneck for agent scalability. Several studies have explored the

use of external memory modules to store and compress past interactions, allowing them to

be retrieved on demand during later decision-making steps [80, 110]. However, designing

memory systems that are both scalable and generalizable - particularly within reinforcement

learning (RL) frameworks - remains an open research problem.

3.7 Summary

In this chapter, we propose a novel framework SAFARI to incorporate multiple sources of

knowledge bases and further address the dependency issue between them. Unlike previous

works, SAFARI can be extended to multiple sources easily and it can handle cases that do

not require any sources or require some instead of all sources between them. We build the

first personalized knowledge-grounded dialogue (KBP) dataset, and experimental results

prove the effectiveness and robustness of SAFARI.

Furthermore, we discuss several ways to empower LLMs to use more diverse and

complex external physical tools, such as learning from demonstrations or feedback. Each

learning paradigm has its own advantages and challenges, but collectively offer a flexible

toolbox for enhancing tool-use capabilities of LLMs and Agents. We highlight that these

methods are not limited to traditional tools like search engines or calculators but can

also be extended to broader APIs and services, such as invoking specialized models from

Hugging Face, executing domain-specific functions, or interacting with robotic systems.

This generalization paves the way for building more capable and adaptive autonomous

agents in open-ended environments.
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Chapter 4

Self-DC: Building Agents with

Self-aware Tool Utilization

4.1 Introduction

Build on top of the unification of internal cognitive tools and external physical tools, it is

important for the agent to decide which type of tool to use at each time step to achieve the

pre-defined goal. Inspired by meta-reasoning theory [28], which models human intelligence

as a continuous cycle of monitoring and control, agents should also assess their own

epistemic state (e.g., confidence, solvability, rewards) and adaptively invoke different tools

based on those assessments.

To build advanced agent intelligence that can learn more like humans do, there are

two keys: i) forming internal knowledge of the world around them to learn, adapt, and

forge plans efficiently; ii) actively interact with external world to gain new knowledge from

trials and experience. Both of two components plays key roles for autonomous intelligent

agents in open-ended, evolving environments. The former one empower the model the

initial understanding and modeling of the world, while the latter enable it to learn from

experience. As a baby learns how the world works largely by observation in the first few

months of life, an agent should also be able to learn such knowledge from the experience
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Figure 4.1: The tool use decision boundary of agent should align with its knowledge boundary. This alignment
represents the optimal behavior of agent that only invoke external physical tools when necessary.

even with the unknown at the beginning.

Figure 4.1 illustrates the ideal situation that agent could monitor its own knowledge

boundary and control its behavior accordingly. Specifically, given the task q, the agent

should first monitor the knowledge required to solve task is known or unknown, or partly

known or unknown if the task is too complex, and then actively interact with external world

only when necessary to gain indispensable knowledge to solve it. This is a dynamic and

complex decision-making processing, closely aligned with how humans reason and plan.

To achieve such goal, two key components are essential:

Monitor: Assessment of Knowledge Boundary. The monitor serves as a self-aware

module that probes the model’s confidence, consistency, or uncertainty to estimate whether

it possesses sufficient knowledge to proceed. An accurate monitor is essential for avoiding

hallucinations, unnecessary computation, or incorrect tool usage. Specifically, the monitor

needs to provide different metrics or signals either from internal or external side, i.e., self-

evaluation or external feedback, ranging from initial judgment of solvability, intermediate

confidence, rewards to the observations. Therefore, these implicit or explicit monitor signals

can guide the controler of agent to call correct tools at each step, leading to correct answer.

Control: Decision of Internal and External Tools. Based on the current state and monitor’s

output, the controller decides whether to call internal cognitive tools or external physical

tools, gain new knowledge and feedback, and provide the answer if all required knowledge

54



are accumulated. If the external physical tool is called, the control needs to pass the related

parameters to the external word, i.e., an executor, to gain new knowledge.

Only in this way, the agent could not only provide correct answer, but also achieve it in

a more efficient way, i.e., only call external physical tools when the required knowledge is

not included in internal parametric space. Therefore, it is expected to minimize the number

of actions to take in the real world to learn a task, as a truly autonomous agent [2].

In this chapter, we first develop a prompting framework that reduplicates the monitor

and control processing for LLMs to solve complex problems, and then we further explore

supervised fine-tuning (SMART [103]) and reinforcement learning (OTC-PO [111]) methods

to empower more efficient and effective tool use policy of LLMs. We further provide an

actionable roadmap to achieve the truly autonomous agent with minimized interactions.

4.2 Preliminaries

Before we delve into specific methods, we would like to introduce several principles

regarding the knowledge boundary and decision boundary of agents.

4.2.1 The Definition of Knowledge and Decision Boundaries

Knowledge Boundary. At any time step t, let W represent the complete set of world

knowledge. We define the model m’s internal and external knowledge as:

Kint(m, t) ⊆ W and Kext(m, t) = W \Kint(m, t)

where Kint(m, t) denotes the internal knowledge embedded in m, and Kext(m, t) repre-

sents the external knowledge accessible from the world. The knowledge boundary is defined

as the frontier between the two:

∂K(m, t) = ∂Kint(m, t) = ∂Kext(m, t)

This boundary marks the epistemic limit of the model’s internal knowledge. We assume
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all internal or external knowledge is accurate to ensure simplicity and generalization.

Decision Boundary. Given a time step t, let Tint = {t1
int, ..., tn

int} be the set of internal

cognitive tools and Text = {t1
ext, ..., tm

ext} the set of external physical tools. The decision

boundary ∂D(m, t) is the point at which the model decides whether to use internal or

external tools to acquire additional task-relevant knowledge:

∂D(m, t) = ∂Tint(m, t) = ∂Text(m, t)

where Tint(m, t) and Text(m, t) denote tool choices leading to internal or external knowl-

edge acquisition, respectively.

In summary, the knowledge boundary defines the model’s epistemic limits, while the

decision boundary governs how the model navigates these limits through tool use. Each

point in the knowledge space corresponds to a point in the decision space, reflecting how

the model chooses to engage with that knowledge through tool use. In this way, the

decision boundary operationalizes the knowledge boundary, shaping the model’s policy for

knowledge acquisition in pursuit of its goals.

4.2.2 Principle 1: Foundations

Lemma 1.1: Over long horizons, scaling laws enable the expansion of Kint; i.e., the knowledge

boundary ∂K expands outward. This expansion reflects the model’s increasingly compre-

hensive internal representation of the world across modalities and domains. For instance,

Sora 1 demonstrates the acquisition of rich physical knowledge, enabling the generation

of realistic, coherent long-form videos. With sufficient training data, architecture, and

optimization, the model effectively compresses the external world into its internal parameter

space [112, 113]. As ∂K expands with scale, the model may ultimately support real-time

abstraction of the world, or even autonomously discover knowledge beyond existing human

understanding [114], leading toward AI for scientific discovery.

1https://openai.com/sora/
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Lemma 1.2: Continual learning methods such as SFT can reshape both the knowledge boundary

and the decision boundary. To stay current and improve performance, models must update

outdated knowledge or acquire new information through continual learning, including

prompting [115] and supervised fine-tuning [116]. These processes naturally shift the

knowledge boundary to reflect updated internal states. In parallel, decision boundaries can

be adjusted to improve tool use behavior, such as encouraging external tool invocation only

when necessary [103, 117].

4.2.3 Principle 2: Uniqueness and Diversity

Across open-source and proprietary models, both unique and shared characteristics emerge.

To better understand model capabilities and limitations, we posit that while each model has

distinct boundaries, there also exist universal properties common to all.

Lemma 2.1: Each model has its own knowledge boundary and decision boundary. These bound-

aries differ due to variations in model size, architecture, training data, and learning objectives.

Larger models trained on more diverse corpora tend to internalize a broader scope of world

knowledge [113]. In contrast, decision boundaries are primarily shaped through explicit

tool use training [14], leading to variation in how models interact with tools to acquire

knowledge.

Lemma 2.2: There exist minimal and maximal knowledge (and decision) boundaries across all

models. The minimal knowledge boundary ∂Kmin =
⋂N

i=1 ∂K(i) represents the smallest common

set of internalized knowledge shared by all models, regardless of their training setup.

Conversely, the maximal knowledge boundary ∂Kmax =
⋃N

i=1 ∂K(i) reflects the union of all

internal knowledge across models, encompassing even niche or domain-specific knowledge

found only in specialized systems. Analogously, minimal and maximal decision boundaries

exist, though they are best interpreted as normative alignment goals rather than fixed,

objective thresholds.
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Figure 4.2: A high-level illustration of Lemma 2.2 for the all models M = {m0, ..., mn}

4.2.4 Principle 3: Dynamic Conservation

Knowledge is inherently dynamic, continuously evolving as new facts emerge and old

ones become obsolete. To capture this temporality, we propose the principle of dynamic

conservation of knowledge, emphasizing how models must adapt to an ever-changing

epistemic landscape.

Lemma 3.1: At any time step t, the total world knowledge Wt is fixed and identical across all

models. Ideally, a model would internalize the entire knowledge set, i.e., Kint(m, t) = Wt,

requiring no external tool use. This entails an aspirational endpoint for fully autonomous

intelligence [2]. Practically, however, as Wt expands over time, models must also evolve to

keep pace. If a model’s epistemic growth outpaces that of the external world, this ideal state

becomes theoretically attainable.

Lemma 3.2: For any task or query q and model m, there exists a minimal and fixed epistemic effort

N(q, m), allocated between internal and external sources, that is necessary to solve the task. This can

be decomposed as N(q, m) = kint + kext, where kint reflects knowledge retrieved from the

model’s internal parameters and kext represents knowledge acquired through external tools.

This formulation reveals several insights: (1) N(q, m) is jointly determined by the complexity

of the task and the capabilities of the model, indicating stronger models may satisfy most

or all of N through internal reasoning (kint → N), while weaker models may depend more

on external assistance (kext → N) [118]. (2) Even models with limited internal capacity can
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achieve high performance by dynamically offloading reasoning or retrieval steps to more

capable tools or agents. This suggests a form of capability equivalence, where optimal

tool use policies allow weaker models to simulate stronger ones. (3) The objective is not

merely task completion, but the development of behavior policies that minimize epistemic

effort while managing latency, cost, and cognitive load. In this view, intelligent behavior is

defined not just by the correctness of outputs, but by the efficiency and adaptiveness of the

pathways taken to reach them.

4.3 Related Work

Monitoring of LLMs To calibrate the known and unknown of LLMs, there are lots of

studies that have delved into methods for estimating and quantifying certainty and uncertainty

in LLMs predictions [119, 120, 121, 122]. There are two types of methods: 1) logit-based

which utilize the model logits [119, 123]; and 2) non-logit-based methods, such as expressing

uncertainty about its own answer in natural language [120], particularly with the rise of

closed-source LLMs. More recently, Xiong et al. [121] benchmarks three categories of the

first type: verbalize-based, consistency-based, and their hybrid methods. They find that

LLMs exhibit a high degree of overconfidence when verbalizing their confidence, which

can be alleviated by different prompting strategies (e.g., Chain-of-thoughts [20]) or more

complicated methods (e.g., Self-consistency [124]). Moreover, different languages also trigger

different level of certainty and uncertainty of language models [125].

Control of LLMs On the one hand, lots of previous methods investigate various methods

to elicit the internal reasoning capability of LLMs [20, 1, 23], such as program-guided

reasoning [126, 127], Self-Ask [128] and retrieval-augmented reasoning [129, 130, 131],

especially for multi-hop questions [132] and in-depth dialogues [23]. On the other hand,

it is important to empower the stateless LLMs to interact with external world with the

augmentation of different tools [76]. Therefore, LLMs can perform tasks that go beyond

their intrinsic knowledge such as retrieving up-to-date information [133, 134] and providing
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domain-specific services by calling different functions / APIs [6]. However, only a few of

them consider the relationship between internal reasoning and external acting, especially for

compositional problems when the necessary unknown knowledge is required. To address

this dilemma, we explore the better trade-off between internal reasoning and external acting

in terms of effectiveness and efficiency.

4.4 Self-DC: Self Divide-and-Conquer for Compositional Ques-

tions

4.4.1 Overview

Large Language Models (LLMs) [66, 135] possess extensive world knowledge thanks to

the scaling of size of pre-training data and model [112], resulting in exceptional capabili-

ties to answer open-domain questions using internal known knowledge encoded in their

parameters [47, 136]. However, due to the cutoff date of training data, it is difficult for

them to answer questions out of their known knowledge (a.k.a., unknown questions), which

necessitates the augmentation of external retrieval [137, 138, 139, 140], such as Google Search

and Wikipedia.

To provide more accurate answers for the questions, most previous works tend to employ

external retrieval methods indiscriminately without considering different types of questions,

resulting in redundant retrieval and unnecessary cost [129, 131]. Alternatively, some meth-

ods simply classify questions into binary categories (i.e., known and unknown), and utilize

either self-generated context or retrieved external context to answer them, respectively [141],

following a generate-then-read [136] or retrieve-then-read [137] paradigm. However, this

binary classification is sub-optimal and inefficient for handling compositional questions, which

consist of multiple sub-questions where each sub-question could be known or unknown,

as illustrated in Figure 4.3. Consequently, these binary-classification methods degrade into

simply retrieving information for every question, as any compositional questions containing

an unknown sub-question remain entirely unknown by large language models (LLMs).
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Q: Is the President of the United States in 2024 the same

individual serving as the President in 2018?

SQ-1: Who is the President

of the United States in 2018?
SA-1: Donald Trump

SQ-2: Who is the President

of the United States in 2024?
SA-2: Joe Biden

A: No, they are not the same person.

Cutoff

date

Timeline

Internal reasoning for known

External retrieval for unknown

+

Figure 4.3: A example of compositional questions, in which a unknown question consists of some sub-questions
can be answered using known knowledge while other sub-questions necessitate unknown knowledge accord-
ing to the cutoff date of LLMs.

Moreover, using the original compositional question as a query frequently leads to the

retrieval of noisy or unrelated documents, which hinders accurate answers [142]. These

limitations highlights the need for more nuanced and efficient retrieval strategies tailored to

the complexity of compositional questions.

In this work, we first formally introduce compositional questions from the perspective

of known/unknown, which is more practical and challenging. To further specify the

compositional questions, we categorized questions into four types according to the knowledge

boundaries of LLMs 2:

• Single Known. The question contains no sub-questions and can be solved using

internal knowledge of LLMs, such as with the generate-then-read method.

• Single Unknown. The question contains no sub-questions and can only be solved

using external knowledge, such as with the retrieve-then-read method.

• Compositional Known. The question contains several sub-questions, and each sub-

question is Single Known.

2The definition begins from the data side instead of model side such as the cutoff date of training data, we
discuss hallucination issue of model side at Sec ??.
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• Compositional Unknown. The question contains several sub-questions, and at least

one sub-question is Single Unknown.

Determining whether a question is known or unknown to LLMs, and whether it is

a compositional question, is a complex task that may require multi-step reasoning. We

introduce a Self Divide-and-Conquer (Self-DC), designed to effectively and efficiently

identify and decompose compositional questions. The main idea of Self-DC is to use the

inherent signals of LLM to control its own behavior, e.g., elicit the internal knowledge or

call external retrieval. Specifically, we define each action as a function, and model the whole

decomposition as dynamic function calls guided by self-aware confidence signals. Therefore,

the internal reasoning capabilities of LLMs can be well elicited while making every external

retrieval call count. In summary, our contributions can be outlined as follows:

• To the best of our knowledge, we are the first to study compositional questions from the

perspective of known / unknown.

• We introduce an automatic data collection pipeline to create the first Compositional

unknown Question Answering dataset (CuQA), serving as an important evaluation

benchmark for LLMs in known/unknown.

• We present a flexible and robust Self-DC framework, which is capable of adaptively

calling different functions on-demand for compositional questions decomposition.

• Experimental results on CuQA and FreshQA [139] datasets show the superiority of

Self-DC in terms of both effectiveness and efficiency, revealing its promising potential

to solve compositional reasoning problem.

4.4.2 Framework: Self Divide-and-Conquer

Since LLMs express certainty in different ways and are prone to hallucination issues,

therefore, we define α as a mean of confidence score distribution for specific LLM, along

with β as the corresponding standard deviation. In this way, the LLMs can recognize when
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Figure 4.4: Overview of Self-DC: a) retrieve-then-read for unknown questions, b) decompose-and-
combination for uncertain questions; and c) generate-then-read for known questions.

a question might be too complex or ambiguous for a straightforward answer, necessitating

the decomposition into simpler parts or the combination of multiple pieces of information.

Specifically, we divide the confidence score into three ranges [0, α − β], (α − β, α + β), [α +

β, 1]. When the confidence score falls into extreme ranges, such as the left ([0, α − β]) or right

([α + β, 1]) side, we can directly apply retrieve-then-read or generate-then-read to answer the

question respectively. However, when it encounters uncertain or confusing questions (i.e.,

fall into the middle part), we decompose the question into several sub-questions to decrease

the uncertainty. We then iteratively solve these sub-questions in the same way and combine

all sub-answers to answer the original compositional question as shown in Figure 4.5. To

ensure efficiency and reduce unnecessary costs, we implement several pruning conditions

to prevent iterations from overflowing: 1) the number of sub-questions is 1, which means

it should be a Single Known or Single Unknown question; and 2) the number of iteration

depth is less than a pre-defined τ. Once these situations happen, we simply regard the

current sub-question as the unknown question and then call retrieve-then-read. In this

way, we can call compositional reasoning when necessary instead of treating all questions

indiscriminately for different LLMs.
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Confidence Score Acquisition Inspired by lots of previous works [120, 121], we use two

types of method to prompt the LLM itself to get the confidence score to answer the question.

• verbalize-based (verb). We instruct the LLMs to output the confidence level from 0 to

100 following the answer to the question [121]. We clearly note that the confidence level

indicates the degree of certainty. Then we re-map the confidence score to the range [0, 1].

The details of the prompt can be found in Appendix.

• probability-based (prob). We additionally utilize the probability information to calculate

the confidence score. Specifically, we firstly prompt the LLMs to generate the answer

using a few words, and then we get the probability p̂i of i-th token in the generated

content. We take the average of probabilities in the sequence as the confidence score [143]

following Eq. 4.1:

con f =
1
N

N

∑
i=1

p̂i (4.1)

Considering the poor performance of LLMs to express uncertainty as reported by lots of

existing works [120, 121] and complex situations in practice, we additionally introduce α and

β to control the range of uncertainty, enhancing the flexibility and robustness of Self-DC.

Other Sub-Functions According to different levels of confidence scores, we carefully

design several functions to complete the compositional reasoning task, aiming to provide a

more accurate answer. We present the details of other sub-functions one by one as follows:

• Generate-then-read: Following Yu et al. [136], we firstly prompt the LLM to generate a

background document from Wikipedia to answer the given question, and then ask the

LLM to answer the question by referring to the generated passage. The prompt details

can be found in the original paper.

• Retrieve-then-read: We utilize the retriever to retrieve external knowledge at the first

step and then ask the LLM to answer the question by referring to the retrieved passage.
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def SelfDC(m, r, q, alpha, beta):
# m: large language model
# r: retriever for searching documents
# q: question to be answered
# alpha, beta: hyperparameters for defining ranges

c = get_confidence_score(m, q)

if c < alpha + beta and c > alpha − beta:
sub_qs = decompose(m, q)
sub_as = [SelfDC(m, r, sub_q, alpha, beta) for sub_q in sub_qs]
answer = combine_sub_qas(m, q, sub_qs, sub_as)

elif c >= alpha + beta:
answer = generate_then_read(m, q)

else:
answer = retrieve_then_read(m, r, q)

return answer

Figure 4.5: The simplified python implementation details of Self-DC, consisting of several functions: 1)
decompose; 2) combine-sub-qas; 3) generate-then-read; and 4) retrieve-then-read.

• Decompose: We prompt the LLMs to systematically break down the overarching question

into several smaller sub-questions. The answers to these sub-questions collectively

contribute to deriving the answer to the original overarching question, similar to Press et

al. [128] and Xu et al [144].

• Combine answers: After the decomposition, we call the main function to enter the

next iteration as shown in Figure 4.5, aiming to get the answer to each sub-question.

Subsequently, we combine the answers to all sub-questions to get the answer to the

original question.

4.5 Experiments

4.5.1 Set Up

Baselines. To provide a comprehensive evaluation, we compare our method with different

prompting methods with or without the involvement of retrieval augmentation: 1) Direct

Prompting [145]; 2) Chain-of-thought (CoT) prompting [20], including zero-shot and

few-shot setting; 3) GenRead [136] which firstly prompts the LLMs to generate known

knowledge and then answer the question; 4) Retrieve-then-read (RR) which retrieves the
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related passages first and then answers the questions, following Yu et al. [130]; 5) Self-

Ask [128] involves generating follow-up questions, retrieving information based on those

questions, and providing answers, until no more follow-up questions are generated and

the LLMs answer the original question at the last; 6) IRCoT [129] interleaves retrieval with

steps (sentences) in a CoT, guiding the retrieval with CoT and in turn using retrieved results

to improve CoT; 7) REFEED [130] and 8) ITER-RETGEN [131] utilize the generated answer

or intermediate reasoning results to enrich the query, leading to better retrieval and final

answer to original question, respectively.

Datasets and Evaluation Metrics. We conduct our experiments mainly on two datasets:

1) the newly proposed CuQA dataset; and 2) FreshQA [139], which contains 600 question-

answer pairs that require fast-changing world knowledge, including the latest ones 3. We

note here that FreshQA is not a typical compositional QA dataset despite it containing

few compositional questions. To select suitable values for α and β, we randomly sample 50

instances as a development set for CuQA, leaving 500 instances for testing. For FreshQA,

we use the original split: 500 test instances and 100 development instances. Following

previous works [129, 130, 136], we select Exact Match (EM)4, F1 to evaluate the performance

of different methods. Furthermore, to enhance the robustness of the evaluation, we use Acc†

as an additional metric and prompt LLMs to assess the predictions related to the actual

ground-truth answers following Shao et al. [131].

Implementation Details We mainly conduct our experiments on two different backbone

models: gpt-3.5-turbo-1106 and gpt-4o-mini, hereinafter referred to as 1106 and

4o-mini respectively, following lots of previous works [130, 131, 136]. For the Acc†

evaluation, we always use 4o-mini as evaluation backbone model. We set both the

temperature and top p as 0.1 to reduce the randomness of LLMs for all methods, rendering

3We use the version on 30th Sep, 2024.

4We consider it is matched when the predicted answer in the ground truth answer due to various outputs
by LLMs.

66



Methods #R
CuQA FreshQA

EM F1 Acc† EM F1 Acc†

w/o retrieval
Direct 0 21.0 19.3 34.2 20.6 21.6 37.6
CoT 0 21.8 20.5 36.6 21.2 22.9 38.8
Few-shot-CoT∗ 0 7.2 1.7 9.6 18.0 11.1 26.8
GenRead 0 12.2 12.6 23.2 18.8 19.3 36.0

w/ retrieval
RR n 30.4 24.7 48.2 34.2 28.9 61.6
REFEED 2n 35.2 8.2 53.2 29.6 16.1 49.2
IRCoT 3n 39.0 8.1 50.4 32.0 15.5 61.2
Self-Ask∗ 0-n 8.6 4.3 11.2 16.8 13.4 27.4
ITER-RETGEN∗ 2n 19.2 5.8 25.4 32.4 15.7 46.6
Self-DC (verb) 0-2n 31.8 20.4 49.4 34.3 25.2 58.1
Self-DC (prob) 0-n 32.6 21.7 50.6 36.2 28.4 62.2

Table 4.1: The performance of baselines and Self-DC with the 1106. The baseline∗ means it uses
demonstrations and The column #R denotes the number of retrieval calls in terms of number of test cases n.
We bold the best performance and underline the second-best performance.

Methods #R
CuQA FreshQA

EM F1 Acc† EM F1 Acc†

w/o retrieval
Direct 0 29.0 19.4 46.4 27.2 17.3 53.0
CoT 0 28.8 18.2 46.0 29.2 18.1 53.8
Few-shot-CoT∗ 0 43.0 3.2 50.8 35.0 9.1 55.4
GenRead 0 29.6 29.2 47.4 26.8 27.7 52.0

w/ retrieval
RR n 32.0 31.6 55.4 35.2 32.6 63.4
REFEED 2n 26.2 33.5 51.8 28.8 34.5 57.4
IRCoT 3n 47.8 13.5 64.6 34.2 17.8 61.4
Self-Ask∗ 0-n 19.8 3.8 48.4 5.6 9.8 59.0
ITER-RETGEN∗ 2n 23.4 12.6 50.9 31.2 21.1 55.8
Self-DC (verb) 0-n 34.0 32.2 53.8 30.2 30.2 59.8
Self-DC (prob) 0-n 36.4 36.5 56.4 37.4 36.6 66.4

Table 4.2: The performance of baselines and Self-DC with the 4o-mini.

a more fair comparison. We implement the Google search engine following LangChain 5 as

an external retriever, and we set the number of retrieved results as 3 and the max iteration

depth τ as 3. According to the preliminary results on the validation set, we fix β as 0.1 and

α as 0.9 for verb (0.8 for prob) on 1106 for both datasets, and α as 0.6 for verb (0.6 for prob

on CuQA; 0.8 for prob on FreshQA) on 4o-mini. The significant test (t-test) is conducted

with p < 0.05 to ensure statistical improvement.

5https://python.langchain.com/docs/integrations/tools/google_search
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4.5.2 Main Results

Table 4.1 and Table 4.2 show the performances of all baselines and our proposed Self-DC

on the 1106 and 4o-mini respectively. Therefore, several conclusions can be drawn from

the results:

CoT (or Few-shot-CoT) does not bring consistent improvements over direct prompting

(Direct). We surprisingly found that the performance of CoT at both Table 4.1 and Table 4.2

is usually worse than Direct, and Few-shot-CoT can not further boost the performance

particularly with 1106, revealing the complexity of compositional reasoning.

Retrieval-based method generally achieves better performance than non-retrieval methods

but the gap is smaller with compositional questions. It is observed that RR and IRCoT are

capable of achieving better performance than non-retrieval baselines, and IRCoT sometimes

achieves the highest performance due to a more complex retrieval design, accompanied

by more cost. Secondly, the gap between retrieval-based and non-retrieval-based methods

on FreshQA is relatively larger than on CuQA. This discrepancy is likely because CuQA

contains more compositional questions, which, when used directly as queries, result in noisier

documents. Furthermore, we surprisingly observe that Self-Ask and ITER-RETGEN achieve

the lowest performance, especially on CuQA. To understand the reason, we examined the

intermediate reasoning results and found that Self-Ask tends not to generate follow-up

questions and directly answer the question, rarely calling for retrieval given the composi-

tional unknown question. On the other hand, ITER-RETGEN retrieves external documents

step-by-step but introduces a lot of noise since the queries are mostly related to the original

compositional question. These observations reveal the significance and valuable insights

provided by the CuQA dataset, highlighting its importance for understanding the challenges

associated with compositional questions.

Self-DC achieves better trade-off between efficiency and effectiveness than retrieval-

based methods. When comparing Self-DC to other baselines considering the consump-
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Figure 4.6: The efficiency analysis of different methods using 4o-mini.

tion of retrieval calls (#R), it is evident that Self-DC achieves better performance compares

with the method utilizing same or more calls, for example, Self-DC (prob) v.s. RR. Even

compared with some methods that require 2 to 3 times more retrieval, Self-DC still achieves

comparable results and even outperforms them in specific dataset. This is important to

highlight, as it not only establishes an effective and efficient framework to call external

retrieval, but also demonstrates a promising path for controlling the behavior of LLMs by

leveraging the internal signals they generate (i.e., the internal confidence scores).

4.5.3 Discussion and Analysis

Efficiency Analysis To directly validate the efficiency of Self-DC, we consider three

dimensions: # internal token consumption, # external retrieval calls and the final perfor-

mance. Table 4.6 illustrate the report. Ideally, we aim for a method which achieves the best

performance appears at the left bottom of figure. Only in such a case, the method would

demonstrate its superiority by not only delivering better performance but, more importantly,

by eliciting the great potential of the internal capabilities of LLMs and minimizing reliance

on external resources or tools. According to the figure, it is obvious that Self-DC achieves

great balance between these three factors. It is worthy noting we observe similar trends on

1106 for both datasets.
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Figure 4.7: The performance of different choices of α with β = 0.1. Left: The performance of different models
with confidence type is prob; and Right: The performance of different confidence types (verb or prob) with the
same model 4o-mini.
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Figure 4.8: The performance of different choices of β with a fixed α as 0.8 for 1106 and 0.6 for 4o-mini.
Left: The performance of different models with confidence type is prob; and Right: The performance of different
confidence types (verb or prob) with the same model 4o-mini.

The Impacts of Different α and β. It is vital to balance alpha and beta for optimizing

the performance of LLMs to different tasks. In this section, we provide detailed analysis

of different choices of α and β. Firstly, we fix β = 0.1 and set α to [0.1, 0.2, 0.3, ..., 0.9].

The results can be found in Figure 4.7. The entire processing can be seen as a 0.2-length

uncertainty block starts from 0 to 1 with stride = 0.1. First of all, We found that none of

the lines shows monotonically increasing or decreasing, and most of the best performances

are achieved in the middle choice of α, revealing the complexity of the target problem. In

detail, there is an upward and then downward trend globally (e.g., in the right figure). It

is reasonable since LLMs utilize more generate-then-read functions at the beginning (e.g.,
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α=0.1, β=0.1), resulting in poor performance. With the uncertainty, blocks move to the right

side (a.k.a, 1), LLMs will utilize retrieve-then-read more frequently. Once exceeds a specific

threshold, the performance will drop since the decomposition will introduce more noise

compared with gains.

4.6 Monitoring and Control of Language Agents

Despite significant progress in enabling language agents to interact with external tools via

prompting engineering, their behavior often remains unstable and suboptimal. To address

this, we further explore better monitor and control methods.

4.6.1 Monitor: Assessment of Knowledge Boundary

In order to assess the knowledge boundary for each model, existing methods typical collect

model-specific supervised fine-tuning dataset to teach the model to say “I do not know" for the

unknown questions and only provide answer for known questions [146, 147, 148]. In detail,

it is usually required to collect lots of known and unknown question answer pairs, and

feed them into LLMs multiple times, and observe how many times the LLMs can provide

correct answer for these questions, and therefore using the frequency of correct answer as

confidence score for each model and question [147, 148]. However, this line of work always

require to re-construct the dataset for different model, since different model has different

knowledge boundaries as illustrated in $ 4.2.3. One potential coarse-grained solution is

to leverage the concepts of minimal and maximal knowledge boundaries to construct a

universal dataset applicable across different LLMs. Specifically, we can curate a collection

of problems that naturally fall into two categories: those that are consistently known by

all LLMs (reflecting the minimal knowledge boundary), and those that are consistently

unknown to all LLMs (reflecting the maximal knowledge boundary). Besides that, there are

several studies exploring the fine-grained monitoring during the reasoning processing by

leveraging the internal confidence signals [149, 150].
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4.6.2 Control: Self-Aware Agent for Better Tool-use Behavior

But do we truly need explicit monitoring signals to guide an agent’s control behaviors?

More specifically, are fine-grained monitoring signals necessary? These questions remain

largely underexplored. It has been observed that simply leveraging outcome-based reward

signals can still effectively enhance the reasoning performance of LLMs [26]. We further

discuss several new methods to improve the tool-use behavior of LLMs.

Supervised Fine-tuning. Supervised fine-tuning (SFT) remains the most common ap-

proach for teaching agents tool use, using small task-specific datasets (e.g., math, code)

to demonstrate when and how to call external tools [102, 14]. However, most of previous

methods often assumes a uniform knowledge boundary across models, which is unrealistic.

As discussed in Lemma 2.1, this mismatch leads to inefficiencies: what is helpful for a small

model may be redundant or even distracting for larger ones. One solution is to create custom

SFT datasets tailored to each model’s knowledge boundary, but this is resource-intensive

and hard to scale. A more practical alternative, as outlined in Lemma 2.2, is to approximate

a maximal knowledge boundary and train agents to defer intelligently when faced with

unfamiliar content. Therefore, we propose SMART [103] - Strategic Model-Aware Reasoning

with Tools, which assume some knowledge naturally fall outside of maximal knowledge

boundary and thus external physical tools are only invoked to provide supplementary

information in such cases. While this approach offers greater generality, it may lack the

precision needed for fine-grained domains, highlighting a trade-off between scalability and

behavioral fidelity.

Reinforcement Learning. Reinforcement learning (RL) offers a more promising path for

aligning a model’s decision-making with its own knowledge boundary, as agents can learn

from experience how to adaptively use tools. The key challenge lies in designing reward

functions that go beyond correctness. While many RL agents are trained to maximize answer

accuracy, this ignores how the answer is reached, including whether reasoning is efficient,
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Figure 4.9: An overview of OTC-GRPO Algorithm.

whether tool use is justified, and whether the trajectory is optimal [27, 107]. Our proposed

work OTC-PO [111] addresses this by balancing correctness with penalties for unnecessary

tool calls, encouraging agents to act with restraint and self-awareness. By optimizing not

only for outcomes but for processes, RL can produce agents that are not only accurate but

also efficient, interpretable, and better aligned with real-world deployment constraints.

4.6.3 Management: Conflicts between Internal and External Knowledge

There is a case that when internal cognitive tools and external physical tools return conflict

knowledge. One typical example is the hallucination issue, that LLMs may make up mis-

leading or fabricated information that is not grounded in factual knowledge (i.e., internal

cognitive tools return wrong knowledge while external physical tools return correct knowl-

edge). To address this issue, we need to first identify knowledge conflict (i.e., Knowledge

Conflict Detection), and then decide which source, internal or external, should be trusted

(i.e., Knowledge Arbitration), and enforce the LLMs can generate the response based on

selected trusted source of knowledge (i.e., Knowledge-grounded Generation). We present

a comprehensive survey of different types of knowledge conflict [151]. Through analysis

of the internal activations of LLMs, we find that these models are capable of internally

registering signals of knowledge conflict, particularly in the mid-layer representations. These

signals can be used to detect the presence of conflict and enable inference-time intervention

strategies to resolve it. Building on this observation, we propose SpARE, a training-free

representation engineering method that leverages pre-trained sparse auto-encoders (SAEs)
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to steer the knowledge selection behavior of LLMs [152].

4.7 Discussion

In this section, we would like to discuss the ultimate goal of agent and a potential path to

achieve such goal.

4.7.1 New Agent Objective

The truly autonomous agent should learn the compression of world in its internal parametric

space, and then learn to complete the pre-defined goal with minimized external actions [2].

In this way, the goal can be defined as follows:

arg min
τ

Cost(τ) subject to M(q, τ) = â, (4.2)

Here the cost is measured as the financial and computational cost for the whole interac-

tions, such as the cost of external tool calls within the trajectory τ. It contains interactions

which utilize both internal cognitive tools and external physical tools. Thus the model is

encouraged to not only generate correct answer or complete the goal but also minimize

the cost during the processing. To clarify specific tool-use behavior for the optimal agent,

let’s considering four different cases in terms of both internal cognitive tools and external

physical tools:

• Maximizing both internal and external physical tool use. In this case, the agent

produces the correct answer but does so through excessive use of both internal

and external tools, regardless of necessity. This behavior is inefficient, consumes

unnecessary resources, and increases the risk of error propagation or tool misuse. It

also obscures the decision-making process, reducing transparency and trust. Rather

than reflecting strategic reasoning, this mirrors brute-force search, which is misaligned

with the goals of scalable and interpretable AI systems.
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• Maximizing external tool and minimizing internal tool use. This entails the agent

over-relies on external tools while underutilizing its internal reasoning capacity. This

may yield correct results, especially for smaller models, but it results in inefficiency

and increased dependence on external systems. More importantly, it conflicts with the

core aim of model scaling: to internalize knowledge within parameters. By deferring

to external tools, the agent misses opportunities to reinforce and generalize its own

representations, limiting long-term autonomy and adaptability.

• Maximizing internal tools and minimizing external tool use. In this setup, the

agent leans heavily on internal reasoning and avoids external tool use [111]. This

behavior promotes autonomy and efficiency, especially in constrained environments,

and aligns with the principle of maximizing model capacity. However, excessive

internal deliberation can lead to overthinking, producing unnecessarily long reasoning

chains. While this reflects strong use of internal knowledge, it may overlook more

efficient external solutions in certain cases, indicating a need for better tool use

calibration.

• Minimizing both internal and external physical tool use. This represents the most ef-

ficient trajectory: solving tasks with minimal use of tools, internal [19] or external [111].

It reflects optimal behavior of using tools only when necessary, guided by precise

self-monitoring and calibrated decision-making. However, extreme minimalism can

risk underthinking or skipping essential steps, especially in complex tasks. In addition,

empirically training agents toward this behavior is difficult, as it requires balancing

correctness with efficiency, which is a more delicate optimization than correctness

alone.

4.7.2 Paths for Agent Foundation Model

Following the established roadmap for foundation models, we propose an analogous

trajectory for agent foundation models, where the core training objective shifts from next-

token prediction to next-tool prediction.
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Agentic Pre-training. Since we unify all interactions under the same tool framework, it

becomes feasible to build a unified data schema capable of representing a wide range of

interactive tasks—much like how next-token prediction underpins most natural language

processing tasks. However, a central challenge lies in collecting sufficient pretraining tra-

jectories for such interactions, given their inherent scarcity and complexity in practice,

particularly in multi-lingual, multi-modal, and multi-task settings. This transforms inter-

action itself into a first-class modeling target, allowing the agent to learn how to gather

information it doesn’t already possess. As research trends toward unified agent architectures,

modeling all forms of interaction (API calls, UI navigation, or environment manipulation) as

structured, learnable outputs opens the door to a new kind of scaling law: one that governs

knowledge acquisition, not just compression. This shift is essential for building adaptive,

self-improving agents in open-ended, dynamic environments.

Agentic Supervised Fine-tuning. As we discussed above, there are two different ways to

fine-tune: 1) general dataset to fit all models; 2) model-specific dataset tailored to its own

knowledge boundary. We argue that both approaches play important roles in refining an

agent’s decision boundary. The general dataset can be incorporated into the pre-training

stage to ensure broad generalization, while the model-specific dataset becomes increasingly

valuable when there are higher demands for effectiveness and efficiency in reasoning and

tool use.

Agentic RL. Actually, it is very hard to collect model-specific SFT to approximate the

accurate knowledge boundary in practice, since there are multiple valid trajectories to

reach the final goal. Therefore, it makes RL a more promising path for aligning a model’s

decision-making with its own knowledge boundary, as agents can learn from experience

how to adaptively use tools. On the internal side, there are many studies trying to minimize

the reasoning token cost to reach the final correct answer [153, 154]. On the external

side, it is believed that our OTC-PO [111] can serve as the foundation for this direction.

It is observed there is a unified reward design, similar with OTC-PO [111], to minimize
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both internal cognitive tool calls and external physical tool calls without sacrificing the

accuracy a lot. We further envision a cyclical training paradigm - RL → SFT → RL → SFT -

where reinforcement learning uncovers high-quality trajectories aligned with the agent’s

knowledge boundary, and supervised fine-tuning consolidates these behaviors for improved

stability and generalization. This iterative process can gradually refine both the agent’s

policy and decision boundary, moving toward increasingly adaptive and self-aware agentic

behavior.

4.8 Summary

In this chapter, we first introduce the concept of meta-reasoning [28] for autonomous

agent, and advocate the key of autonomous agent lies in alignment between its decision

boundary and knowledge boundary, aiming to minimize external actions in the real world

to achieve the pre-defined goal. Then we present three specific principles about knowledge

boundary and decision boundary of agents, followed by three different proposed methods -

Self-DC [117], SMART [103], OTC-PO [111].

Furthermore, we discuss the different behaviors of agents to achieve the pre-defined

goal, identify the optimal agent behavior should minimize the interactions (i.e., tool calls)

to reach the final goal. We finally offer a roadmap for developing agent foundation model

that can operate effectively in open-ended environments, learn efficiently with minimal

supervision, and generalize across domains.
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Benchmarks
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Chapter 5

AppBench: Benchmarking Tool

Planning in Physical World

5.1 Introduction

Empowering Large Language Models (LLMs) [155] with versatile tools such as retrievers

[133, 134], models [86], and even physical robots [156], holds significant promise in over-

coming inherent limitations, such as hallucination [157] and outdated information [87, 158],

and unveils the immense potential for LLMs to tackle increasingly complex and interactive

real-world tasks [22, 159]. Over the past several months, lots of new benchmarks and

datasets have been proposed to evaluate the performance of different LLMs to adeptly select

and execute various tools [86, 159, 160], marking a pivotal milestone in their evolution. Out

of plentiful tools in practice, APIs have become one of the fundamental and promising tools

in today’s digital world, due to greater flexibility and customizability with well-defined

format and ease of execution [75].

Previous works have attempted to evaluate LLMs on their ability to call the correct

API in multiple turn dialogues, such as API-Bank [159] and ToolBench [161], or single

turn instructions, like APIBench [162]. However, most existing benchmarks focus either

on a single API call in a single turn or on APIs with limited arguments. For instance,
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Search for a locomotive departing from Portland, OR on the 2nd of 
this month to Vancouver, BC, and then search for a residence in 
Vancouver for two people with a rating of 4.2 or higher.

from, total, class, … = findtrains (date_of_journey =
2019-03-02, from = Portland, to = Vancouver)

where_to, address, … = searchhouse ( number_of_adults
= 2, rating = 4.2, where_to = Vancouver)

…
Visible APPs with APIs

User Instruction

Planning Path

Figure 5.1: An example of one user instruction requires two independent APIs from different APPs since
input arguments of both two APIs do not rely on each other. We use different icons to indicate different APPs,
and color API, and returned arguments and input arguments.

API-Bank mainly evaluate one API call per turn in multi-turn dialogues, while APIBench

and ToolBench considers APIs only with one or two arguments (e.g., only one output with

one or two inputs). Furthermore, the small number of arguments makes it difficult to

fully explore the complex dependency relationships between multiple APIs. For instance,

the input arguments for a current API may depend on the return arguments of several

previous APIs. These limitations highlight a gap in addressing complex user instructions

when it is necessary to utilize multiple APIs in practice, underscoring the need for more

comprehensive and practical evaluation benchmarks.

To bridge the gap, we introduce a new evaluation benchmark: AppBench, representing

the first effort to assess the aptitude of LLMs to function as the meta planner for multiple

APIs from various sources for complex user instruction. Specifically, we simulate a situation

in which the user instruction can be fulfilled through collaboratively API calls from various

APPs in the mobile device. Figure 5.1 shows one typical example. Given the complex

user instruction, the meta LLM, such as Apple’s Siri and Google Assistant, need to plan

an executable path according to user instruction and corresponding API descriptions. To

fulfill this requirement, it is necessary not only to indicate which APP will distribute and
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execute each API but also to specify the execution order of the APIs, including all necessary

inputs and returned arguments. We consider this setting aligns well with the complexity

and practical limitations in the real world, and presents a great opportunity for advanced

AI assistants like Apple’s Siri to showcase their intelligence and capability in orchestrating

collaborative API executions across multiple Apps.

In this way, two significant challenges are identified: graph structure and permission

isolation. Firstly, the inter-dependency between multiple APIs creates a more complex

execution structure. Some APIs can be executed independently, while others are dependent

and must be executed sequentially, resulting in a graph-like structure. Secondly, these

APIs may originate from different sources, and the LLM might not have permission to call

them directly. This necessitates identifying the authorized source for each API. For instance,

APIs from one company may only be executed by an LLM within the same company. In

doing so, we aim to chart a path towards realizing the vision of an intelligent assistant

capable of seamlessly navigating and interfacing with the myriad APPs and APIs pervasive

in contemporary digital ecosystems. To conclude, our contribution can be summarized in

three folds:

• To the best of our knowledge, we are the first to identify graph structure and permis-

sion isolation issues of multiple API calls when addressing complex user instructions.

• We propose AppBench, serving as an important complementary evaluation benchmark

to assess the planning capabilities of different LLMs as meta planner for these APIs.

Additionally, we introduce an automatic data collection pipeline, which can be used

to gather data efficiently and effectively.

• Our experimental results on 9 distinct LLMs demonstrate almost all models, including

the latest GPT-4o, fall short in this setting, particularly when dealing with complex

graph planning structures. Further analysis shows that simple in-context learning and

fine-tuning do not significantly improve performance.
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5.2 Related Work

Tool Benchmarks. The complexity of real-world tasks necessitates the integration of

diverse tools and services, consisting of three types of tools [75]: 1) physical interaction-

based tools [156]; 2) GUI-based tools [163]; and 3) program-based tools [133, 159]. On the

one hand, some work focuses on models, retrievers, or calculators to address the intrinsic

limitations of LLMs, such as ToolQA [138] and ToolBench [161]. On the other hand, another

line of work targets APIs since they are particularly crucial for bridging smooth interaction

between humans and the digital realm [159, 160, 161]. Most previous works formulate this

as an API selection task given all related information about each API and current input,

which overlooks the nuanced dependencies and permission constraints between different

APIs, such as APIBench [162] and API-Bank [159]. Nevertheless, the successful execution

of APIs in the real world necessitates meeting requirements fulfilled (either the value is

provided by the user or previous APIs) and obtaining permission from trusted agents

beyond just knowing API names and a few arguments. More details can refer to latest

survey [164] and tutorial [76].

Language Agent. Existing frameworks for language agents have made notable strides in

facilitating interaction with external tools [86, 159, 160] and environment [165, 166]. They

usually follow the single-agent paradigm to access different tools or services sequentially

[22, 159], or multi-agent framework by assigning different agents different roles to call

different cognitive tools [1] . For example, Lu et al. [22] propose Chameleon which utilizes

one agent to plan the execution order of different services by outputs a sequence of names of

tools, which assume that the agents to call these tools are already known, and lots of works

follow this setting [160, 167]. Furthermore, various benchmarks are proposed to evaluate

the abilities of LLMs serving as agents in different situations [159, 168, 169]. For instance,

Yao et al. [105] proposes WebShop to evaluate whether LLMs are capable of interacting

with the Web. Similarly, Xavier et al. [165] simulates household activities through programs,

and many works use this as a testbed for embodied agents [24]. Latest work focus on using
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APIs or functions to control the whole planning processing of agents [117].

5.3 AppBench: Planning of Multiple APIs from Various APPs

5.3.1 Task Definition

Given the user instruction u and a virtual mobile environment with an APP family, E =

{APP1, APP2, ..., APPn} where each APP contains several APIs {p1
i , ..pj

i} where i stands for

ith APP and j means jth API inside this APP, the meta agent need to decide an executable

path to call different APIs from various APPs to fulfill the instruction in the format of the

list which each item in the list is {APPi : r1, r2, .., rm = pj
i(k1 = v1, ..., kn = vn)}. The APPi

and pj
i denote the name of the APP and corresponding API of this APP, and the ri and ki

mean the ith returned and input arguments respectively. The vi can be the actual value

provided by the user or a returned argument by previous APIs.

5.3.2 Compositional User Instructions: SS, SM, MS, MM

Based on the number of APPs and APIs utilized in each user instruction, the data can be

categorized into four distinct types. Each category represents a typical use case in practical

scenarios, creating a comprehensive benchmark for evaluating real-world applications when

combined.

• Single APP Single API (SS) The instructions of the users only need to utilize one API

from one APP.

• Single APP Multiple API (SM) The instructions of the users need to utilize multiple API

from one APP. It is important to note that these APIs can be called either sequentially or

concurrently, depending on whether there is a dependency between their arguments.

• Multiple APPs Single API (MS) The instructions of the users need to utilize multiple

APIs and each of them belongs to one different APP. Also, there may exist dependency

between APIs across different APPs.
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Benchmark SS SM MS MM DP
APIBench [162] ✓ ✗ ✗ ✗ ✗

API-Bank [159] ✓ ✗ ✗ ✗ ✗

ToolQA [138] ✓ ✗ ✗ ✗ ✗

ToolBench [161] ✓ ✓ ✓ ✓ ✗

UltraTool [160] ✓ ✓ ✗ ✗ ✓

AppBench (Ours) ✓ ✓ ✓ ✓ ✓

Table 5.1: Comparison with existing evaluation benchmarks at the turn-level for a fair comparison. DP stands
for Dependency.

Existing task-oriented
dialogue datasets

Dialogue Context

Please make a hotel 
reservation for me to attend 
EMNLP 2024 conference.

Summarization

…

APIs from different Apps

Planning Path of used
App and API

build dependency

…

User Instruction

Quality Control

Figure 5.2: A high-level processing to collect the AppBench, taking advantages of existing task-oriented
dialogue datasets.

• Multiple APPs Multiple API (MM) The instructions of the users need to utilize multiple

APIs and multiple APPs. The difference with MS is there may exist multiple APIs come

from the same APP. Furthermore, the dependency relationship between arguments can

be the most complex when dealing with APIs from the same APP or from different APPs.

Table 5.1 shows the detailed comparison between AppBench with other popular bench-

marks. Most of existing benchmark focus on part of these typical situations or overlook the

complex dependency relationships between multiple APIs. In addition, our formulation

highlights the potential for investigating graph structure and permission management, consid-

ering the inherent complexity of APIs and Apps, particularly in terms of handling DP in

multiple input and output arguments.
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5.3.3 Data Collection

To maximize the authenticity of user instructions and minimize human efforts, we prioritize

using existing task-oriented dialogue datasets [170, 171]. These datasets are typically

collected through human-to-human interactions in real-world scenarios and contain a wide

range of APIs across numerous domains and services. Specifically, we selected the SGD

[170] dataset as the seed dataset because it encompasses most of the domains and APIs.

We then utilized LLMs and Python scripts to generate the desired inputs and outputs,

respectively. Figure 5.2 illustrates the detailed procedures.

Instruction Acquisition. Firstly, we extract the utterances of the user and system in the

task-oriented dialogue and feed it into the LLM1 to summarize the user’s requirements in

one instruction. For example, the user may want to know the city and date of EMNLP 2024,

and book a hotel according to the city and date. In the previous task-oriented dialogue,

this is achieved by multi-turn interactions. In contrast, we summarize the whole dialogue

into one complex user instruction to mimic more natural and complex cases in practice.

To ensure that the values of certain intermediate arguments (such as date and city) are

not disclosed at the instruction, we require the LLM to avoid outputting the actual values

of other arguments, except for those that are explicitly provided in the prompts, such as

user-aware arguments.

Planning Path. Besides the instruction part, we write a Python script to automatically

parse the API calls at different system turns in the multi-turn dialogue to form the planning

path as the output. Specifically, we regard different domains (a.k.a., services) in task-oriented

dialogue as different APPs such as restaurants and hotels, and extract the name of the

domain and API first to locate which APP should invoke to call the API, and then we follow

the execution order of different APIs to build the dependency between various arguments.

For example, if the returned arguments from the previous API are required in the current

1GPT-4o during the collection
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Statistics SS SM MS MM
# Samples 200 200 200 200
# Apps 9 11 10 11
# APIs 11 22 12 23
Avg. Apps 1.0 1.0 2.7 2.2
Avg. APIs 1.0 2.2 2.7 3.3
Avg. arguments 4.0 4.5 3.8 4.4
Max. Seq. 1 4 4 8
Max. Para. 1 1 4 3
Avg. Seq. 1 2.2 1.2 1.9
Avg. Para. 1 1.0 2.2 1.8

Table 5.2: The data statistics of our proposed AppBench.

API, we use #name to indicate it such as #date and #city in the Figure 5.2. In this way, we

can get an executable and unique path to execute APIs from different APPs.

App APIs
Rents getcarsavailable, reservecar, getride
Hotels searchhouse, bookhouse
Services book_stylist_appointment, find_stylist_provider, book_therapist_appointment, find_therapist_appointment
Restaurant reserverestaurant, findrestaurants
Movies buymovietickets, findmovies, gettimesformovie, reviewmovies
Trains gettraintickets, findtrains
Events findevents, buyeventtickets
Travel findattractions
Buses findbus, buybusticket
Flights searchonewayflight, searchroundtripflights
Payment requestpayment, makepayment
Music playmedia, lookupmusic
Weather getweather

Table 5.3: List of All Apps and their corresponding APIs in the AppBench.

Quality Assessment To ensure the quality of data, we utilize a Python script to validate

whether or not all actual values are provided from the user side, and none of values are

provided from the system side. Furthermore, we adapt GPT-4o to score each instruction in

terms of fluency and diversity from 1 to 10, and then remove cases whose score is lower

than 6. Approximately 20% of the samples were removed, and the average score of the

remaining samples is around 8.05. We finally manually check each instruction-path pair,

and remove some mismatch pairs such as the instruction is simple or API calls can not

complete the user instructions, resulting in 200 high-quality samples for each category.
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Data
Type Example Structure

SS
Instruction: Find a house with a rating of 4.6 or higher for a trip to Delhi for two people, inquire about laundry service availability
Output:
House: address, phone_number, total_price, has_laundry_service, … = searchhouse(number_of_adults='2', rating='4.60', where_to='Delhi’)

SM

Instruction: Please book a Hatchback car with insurance to be picked up from Warsaw Chopin Airport on March 7th at 1:30 pm, and returned on 
March 13th in Warsaw.
Output:
Rents: pickup_location, price_per_day, ….. = getcarsavailable(car_type='Hatchback', city='Warsaw', end_date='2019-03-13', pickup_time='13:30', 
start_date='2019-03-07’)
Rents: car_type, car_name, …… = reservecar(add_insurance=‘True’, car_type=car_type, end_date=end_date, pickup_location=#pickup_location, 
pickup_time=pickup_time, start_date=start_date)

MS

Instruction: Search for a locomotive departing from Portland, OR on the 2nd of this month to Vancouver, BC, and then search for a residence in 
Vancouver for two people with a rating of 4.2 or higher.
Output:
Train: from, total, class, … = findtrains (date_of_journey = 2019-03-02, from = Portland, to = Vancouver)
House: address, phone_number, total_price, has_laundry_service, … = searchhouse(number_of_adults=‘2’, rating=‘4.2‘, where_to=
Vancouver’)

MM

Instruction: Please make a reservation for 3 people at one Korean restaurant in San Francisco at 1:30 pm on March 12th, and also book a Luxury 
taxi for 3 to 4 Embarcadero Center.
Output:
Restaurant: restaurant_name, has_vegetarian_options, phone_number, rating, address, price_range, category, … = findrestaurants (category
='Korean', has_seating_outdoors='True', location='San Francisco’)
Restaurant: date, time, location, …… = reserverestaurant (date=‘2019-03-12’, location=location, number_of_seats=‘3’, restaurant_name =
#restaurant_name, time='13:30’)
Rents: destination, ride_type, ride_fare, wait_time, number_of_seats = getride(destination='4 Embarcadero Center', number_of_seats=‘3’, 
ride_type='Luxury')

Para.=1
Seq.=1

Para.=1
Seq.=2

Para.=2
Seq.=(1,1)

Para.=2
Seq.=(2,1)

Figure 5.3: An example of different types of samples in AppBench. We color APP, API, and returned
arguments and input arguments. We also present the structure of the example using grey nodes and colorful
nodes to indicate user instruction and APIs from different APPs, respectively. We bold the argument which is
returned by the previous API call (a.k.a., dependency relationship). Para. and Seq. represents the parallel and
sequential size of the corresponding data sample. We emphasize we only choose the simplest examples in each
type for better understanding, there are data samples with much more complex logic structures in the original
dataset.

5.3.4 Data Statistic

Table 5.2 illustrates the statistics of AppBench. Specifically, there are approximately 10

different APPs for each type and over 20 various APIs in both MS and MM. We provide the

list of all APP and API in Table 5.3. Secondly, the average number of APIs increases from

SS, SM to MS, MM, revealing the complex relationship. We also emphasize that the higher

number of arguments for each API aligns with the complicated nature of tool execution in

practice, as there may be multiple input and returned arguments for one API. Furthermore,

we provide statistics about sequential and parallel relationships in each category (Seq. and

Para.), revealing the complex graph structure in the dataset. Figure 5.3 presents one example

for each category for better understanding.

87



Models
SS SM MS MM

F1app F1api Succ F1app F1api Succ F1app F1api Succ F1app F1api Succ
Mistral-7B 55.97 16.31 0.51 36.59 15.09 0.50 33.72 6.42 0.00 28.92 7.56 0.00
Vicuna-13B 43.20 3.70 2.00 34.71 4.63 0.50 20.43 3.10 0.00 21.05 2.52 0.00
LLaMA3-8B 63.04 42.67 23.23 37.20 25.33 0.50 30.65 19.52 0.10 26.39 17.80 0.05
LLaMA3-70B 71.20 70.00 50.00 46.48 46.96 10.50 32.61 32.96 2.50 28.97 28.53 0.50
QWen1.5-7B 48.14 19.54 0.00 30.13 16.71 0.00 23.24 10.11 0.00 23.76 11.55 0.00
QWen1.5-14B 72.89 28.41 10.10 41.89 25.51 1.50 42.22 21.98 0.80 32.36 15.07 0.00
QWen1.5-72B 81.23 24.28 12.50 51.89 25.27 1.00 45.94 13.42 0.62 38.53 11.51 0.00
GPT-3.5 63.60 57.95 30.81 41.49 43.65 6.50 33.17 34.53 7.00 27.79 28.09 1.00
GPT-4o 88.31 86.87 70.92 50.83 50.57 20.50 39.39 39.14 11.00 32.62 32.35 2.00

Table 5.4: The main results of different LLMs on AppBench. Bold highlights the best score among all models,
and underline underscores the best score under the same model scale

5.4 Experiments

5.4.1 Setup

Models. We choose several LLMs from both open- and closed-source models, aiming to

provide a comprehensive evaluation, following [138, 160]. Specifically, we choose Mistral-7B

(Mistral-7B-v0.2) [172], the LLaMa3 series [173] (Meta-Llama-3-8B/70B-Instruct),

and the Qwen series [174] (Qwen1.5-7B/14B/72B-Chat) from open-source LLMs. Be-

sides that, we also select GPT3.5 (gpt-3.5-turbo) and GPT4 (gpt-4o) from closed-source

LLMs. We also tried other models such as LLaMA2-7B or Vicuna but we find it difficult for

them to output in the required format.

Implementation Details. We set the temperature and top p as 0.1 to reduce randomness.

The experiments of open-source models are run on NVIDIA A100 GPUs and those of

closed-source models are fulfilled by APIs of OpenAI. To address the limitations imposed by

the varying context windows of different LLMs, we adopt a hierarchical prompting approach.

First, we prompt the LLMs to identify the relevant APP. Once the appropriate APP is

determined, we then provide the LLMs with only the API descriptions of these specific

APPs.
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5.4.2 Evaluation Metrics

In order to evaluate the LLMs’ capabilities of selecting proper APPs, choosing APIs, and

fulfilling all arguments to execute the API based on the users’ instruction, we carefully design

two F1 scores for APP and API, and one overall success rate considering the complexity of

the task.

F1 of App. We first get the precision Papp as the number of correctly predicted APPs

divided by the total number of APPs predicted by the model:

Papp =
app_hit_num

app_pred_num
(5.1)

and recall Rapp as the number of correctly predicted APPs divided by the total number

of APPs that are in the ground truth as follows.

Rapp =
app_hit_num

app_ground_truth_num
(5.2)

The F1 of App score is 2PR / (P+R), as usual.

F1 of API. Similarly, the metrics of API predictions can be evaluated using F1api. Note

that we only consider the name of the API here to determine LLM whether or not to choose

the right API, and the performance of arguments of APIs is evaluated in the next metric.

Success Rate (Succ): This metric evaluates whether the LLMs can fully execute the user’s

instruction by correctly identifying all required APPs, APIs, and arguments. It is defined

as the proportion of instances where all elements—APP, API, and arguments—are in

perfect alignment with the ground truth, considering the complex dependency relationship

between different APIs across APPs, resulting in a direct measure of model capability in full

instruction fulfillment. Since there may exist different output orders, we calculate this at the

structure level since the execution structure is unique.
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5.4.3 Main Results

Table 5.4 shows the results of different LLMs for different types of user instructions on

AppBench, respectively. Several conclusions can be drawn from the results.

Overall, GPT-4o achieves the best overall performance, while LLaMA3-70B sometimes

outperforms GPT-3.5, mostly in scenarios only involving single APP. In general, other

models significantly lag behind GPT-4o in all types of instructions, and only QWen1.5-72B

or LLaMA3-70B achieves better or competitive performance compared with GPT-4o. Despite

significant advancements in LLMs, the existing models still fall short in addressing the

complexities of planning cases such as multiple APPs and multiple APIs. One fact is that all

LLMs only get less than 3% Succ in MM situations.

As the size of the model increases, the performance can get further improved regardless of

the type of instructions and the improvement becomes less significant with multiple APPs.

As evidenced by LLaMA3 and QWen1.5 series models, we can find that large models mostly

lead to better performance. However, when the instruction requires coordination between

multiple APPs, most models show a significant drop in performance and some models

even get 0 at Succ, such as QWen1.5-7B and 14B. Moreover, the F1app can get around 10%

improvement in a single APP while only less than 5% in LLaMA3 series models.

The complexity of planning highly impacts the performance of these models. From the

varying scores of different LLMs across different scenarios, a trend in performance emerges:

the observed order of performance is approximately: MM < MS < SM < SS. This trend exists

in most LLMs such as GPT-4o, QWen1.5-14B, LLaMA3-8B, and LLaMA3-70B. The slight

difference between SM and MS can be attributed to different percentages of specific data

examples such as the number of APPs and APIs. This kind of trend also aligns well with

our intuition that the MM scenario is the most complicated, followed by MS and SM, and

SS is the simplest.
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Figure 5.4: The relationship between GPT-4o’s performance with parallel and sequential scaling. Both parallel
and sequential scaling cause challenges for model performance.

5.4.4 Discussion and Analysis

We conduct a comprehensive analysis, aiming to answer three research questions. RQ1: How

do the parallel and sequential dependencies influence the model performance? RQ2: Is it necessary to

identify APP first to reduce the context window? and RQ3: What is the major bottleneck of current

LLMs?

The Effects of Dependency Structures We classify the dependency structures among APIs

as twofold: parallel execution and sequential execution. For each data sample, we measure

the parallel execution scale by the number of connected components of APIs and use the

average size of these API-connected components as the sequential execution scale. The data

sample with a sequential scale of 1 means no sequential dependencies among APIs. All of

the APIs can be finished in a parallel way. Then, we classify the data samples of AppBench

based on the above criteria and discard the categories with less than 10 samples.

We illustrate the Exact Match (EM) of Arguments of GPT-4o in Figure 5.4 since arguments

are directly related to the dependency relationship. First of all, when the parallel scale is

fixed, an increased sequential scale becomes more challenging for GPT-4o, and vice versa.

Secondly, GPT-4o appears to struggle more with sequential-complex data than parallel-
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Figure 5.5: The performance gap between hierarchical and flat prompting on GPT-3.5 and GPT-4o.

complex samples. The gap between different para. size (i.e., when seq. size is fixed) is much

smaller than the gap between different seq. size (i.e., when para. size is fixed).

The Effects of Different Prompting In the main experiments, we initially required LLMs

to select candidate APPs based on user input and the APP’s descriptions, and then generate

API calls, resulting in hierarchical prompting. Recently, many studies have expanded the

context of LLMs to 200K or more [175]. Many of these works proposed LLMs with a context

window that is sufficient to accommodate all the descriptions of APPs and APIs at once (flat

prompting). Therefore, this section explores how the model would perform if we directly

provided all apps and APIs to the model. We test GPT-3.5 and GPT-4o and compare the

results in Figure 5.5.

We can observe that flat prompting has impacted the performance of the GPT-3.5, with

obvious declines in metrics such as F1app scores across data types. We attribute this to

the introduction of a large amount of irrelevant information, which affects the model’s

understanding and extraction of useful APPs and APIs. Surprisingly, the GPT-4o model

achieved better performance using flat prompting. We believe this is due to the GPT-4o’s

more powerful long-context understanding capabilities, which allow it to accurately identify

the required APP and API. Moreover, the absence of the error propagation effect that occurs
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Category
Keys Values

I D I D T/S
SS 6.1 - 6.6 - 42.1/26.3
SM 5.5 8.0 2.5 75.5 27.1/15.2
MS 6.0 1.0 6.0 30.0 45.1/8.8
MM 19.0 15.0 6.0 82.0 36.8/24.6

Table 5.5: Error analysis of GPT-4o on AppBench. I and D stand for independent and dependent variables
or values, respectively, between multiple APIs. T/S refers to time-related or space-related values, such as start
date and location.

Settings
SS SM MS MM

F1app F1api Succ F1app F1api Succ F1app F1api Succ F1app F1api Succ
GPT-4o 88.31 86.87 70.92 50.83 50.57 20.50 39.39 39.14 11.00 32.36 32.35 2.00
3-shot 93.73 90.73 81.63 51.16 50.90 13.50 40.12 39.92 12.50 32.72 32.73 2.50
4-shot 93.23 89.72 79.59 50.96 50.70 14.00 40.29 40.29 10.50 32.44 32.44 3.00
5-shot 93.70 91.18 79.59 50.32 50.06 14.00 40.33 40.12 12.50 32.36 32.36 2.50

Table 5.6: In-context learning results of GPT-4o on AppBench.

during the first APP selection step of hierarchical prompting, has led to a clear improvement

in performance. However, flat prompting requires a strong contextual capability that few

models possess, and it necessitates the input of a large number of irrelevant tokens, which

incurs additional computational power consumption.

Error Analysis We further conduct error analysis at the argument level since it is directly

related to different relationships between multiple APIs, to identify potential bottlenecks

of the current best model: GPT-4o. Specifically, there are two main categories of errors to

consider: 1) key error. It occurs when the model predicts fewer keys than expected to success-

fully execute the API call, and it can be further divided into two types: Independent: The

missing or incorrect keys are from the independent variables or arguments and Dependent:

The missing or incorrect keys are from the dependent variables or arguments; and 2) value

error. it occurs when the model predicts values that do not match the ground truth values,

given the name of the key. Value errors can also be divided into I and D types.

Table 5.5 presents the percentage of error cases over the number of total arguments in

each category while T/S is the percentage over all error arguments in each category. It is

found that as complexity increases, errors also increase. The lower D-key error and D-value
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“Hi, could you get me a restaurant booking on 

the 8th please?”

“Any preference on the restaurant, location 

and time?”

“Could you get me a reservation at P.f. 

Chang's in Corte Madera at afternoon 12?”

“Please confirm your reservation at P.f. Chang's 

in Corte Madera at 12 pm for 2 on March 8th.”

Env State: 𝑆𝑡

Env State: 𝑆𝑡+1

Env State: 𝑆0

…

VirualMobile Env

2 Tool Awareness: Which

action should I take?

3
Tool Selection: Which API

call is triggered?

4
Tool Execution: All arguments

fulfilled?1
Tool Creation: What kind of

tools to create?

5

6 Role Play: What kind of response

style?

Response: What should I say

w or w/o tools?

1

2 3 4

5 6

Figure 5.6: A typical example to show the entire life cycle of stateful tool use in multi-turn dialogues. The
dialogue agent need to create the tools first or on the fly ①, and then decide whether or not use tools ②, which
tool to use ③, execute it with all required arguments fulfilled ④, convert the tool results into responses with
different role configs as conversion goes ⑤⑥.

error in MS can be attributed to a smaller percentage of dependency cases in this category.

Out of all types of errors, the D-value error appears to be the biggest bottleneck or challenge

for the LLM. Further analysis reveals that the value errors are particularly prevalent for

time and space-related keys. For example, the language models may struggle to accurately

recognize or reason about date/time expressions used in the user’s input, such as "next

Monday".

5.5 Towards More Complex and Personalized Tool Planning

Since AppBench mainly focus on single turn tool planning, we further construct 1) DialogTool,

which is a multi-turn dialogue dataset with stateful tool interactions considering the whole

life cycle of tool use, across six key tasks in three stages [176]; 2) ToolSpectrum, a bench-

mark designed to evaluate LLMs’ capabilities in personalized tool utilization [177].

5.5.1 DialogTool

Existing benchmarks that assess Language Models (LMs) as Language Agents (LAs) for

tool use primarily focus on stateless, single-turn interactions or partial evaluations, such

as tool selection in a single turn, overlooking the inherent stateful nature of interactions

in multi-turn applications. For instance, when a user fails to provide all the required
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arguments to use a tool in a single turn or requests details about a previous tool call,

it becomes infeaible to provide detailed response without the tracking of tool states. In

addition, most of existing benchmarks or environments fail to address the complexities

of real-world interactions across the entire lifecycle of tool use, encompassing tool creation,

selection, execution, and integration of final responses, especially for tools with varying

numbers and types of arguments [6, 161].

To maintain seamless interaction over long horizons, we introduce DialogTool, the

first benchmark designed to comprehensively evaluate the entire lifecycle of stateful tool

use in multi-turn dialogues. Generally, we leverage existing dialogue datasets, particularly

task-oriented dialogue datasets (TDD) [170], to gather data and construct the corresponding

evaluation environment efficiently and effectively. In detail, on the data side, we regard the

service/domain, slots and intents in TDD as different Apps, Arguments, and APIs, and transform

every database lookup operation in the dialogue into an API function call, adhering to the

standard tool call paradigm [6, 159]. On the environment side, we firstly store the output for

each API call as the database, and then manually implement each function for all APIs and

ensure the correctness2, resulting in a virtual mobile environment (VirtualMobile) with

lots of supported Apps and APIs. For example, the user may want to find one restaurant

with specific food and location, and the result can be returned using FindRestaurant API

in Restaurant App that takes the desired food type and location as input parameters, and

returns a list of names of matching restaurant.

Building on top of DialogTool and VirtualMobile, we can assess the entire lifecycle

of stateful tool use by examining six dimensions across three different stages (Figure 5.6): 1)

Tool Creation to generate code function given the whole tool description; 2) Tool Utilization

which consists of tool awareness to determine whether or not require tools, tool selection to

select appropriate API and tool execution to fulfill all arguments; and 3) Role-consistent

Response to generate final responses according to different roles (i.e., role play) and tool

states (i.e., response generation). It is worth noting here that the role playing transforms

2Given same input in the dialogue, it can produce same output,
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Gender: Male Height: 174 Age: 15, …

Preferences: Prefers budget-friendly options, 

seeks lowest prices, compares brands for best 

deals.

Weather: Thunderstorm Time of Day: 9:00

Date: 2024-08-07, ….

Domain Policy: Users under 18 cannot 

independently purchase intercity or long-

distance tickets (e.g., flights, trains) and must 

be accompanied by an adult or obtain 

guardian consent.

Apps: Ctrip: An integrated software that can be 

used for renting cars, booking tickets for outings, 

and booking hotels. Tmall: …, …

APIs: rentCar(), bookTicket(), bookHotel()

Arguments: #from, #to, #ticketType, 

#shippingAddress, #category, …

Profile

Env.

Tools

I need to book a flight to Xian, could you help me book the tickets?

Ctrip: bookTicket(#from=beijing, #to=xian, #ticketType=one-way, #count=1,

#transportation=flight, #seatType=economy class)

Explaination: The user is a 15-year-old student with limited financial capacity, 

therefore, the economy class ticket is more affordable and cost-effective.

User Instruction

User Instruction +

According to domain policy and profile information, you are not authorized to

book ticket.

User Instruction +

User Instruction +

Ctrip: bookTicket(#from=beijing, #to=xian, #ticketType=one-way, #count=1, #tr

ansportation=train)

Explaination: The user should take the train as it is safer and more reliable in th

understorm weather, avoiding delays and risks.

Figure 5.7: An example from our proposed ToolSpectrum, illustrating the effects of user profile and
environment on personalized tool utilization. This illustrates three distinct scenarios, considering profile-only ,

environment-only , and combined profile and environment factors .

responses into different styles to enhance user engagement, independent of the tools being

used, allowing for varied expressions regardless of the specific tools employed.

5.5.2 ToolSpectrum

It is crucial to recognize that users with different contexts prefer to utilize different tools

when aiming to achieve the same objective [178]. As illustrated in Figure 5.7, when a

user prioritizes budget-friendly options, the system should recommend an economy class

flight ticket as the most suitable option. Besides, suppose environmental factors, such as

thunderstorms, make air travel unsafe. In that case, the system should suggest a train ticket

as a safer alternative, providing the user with an explanation for this recommendation.

Additionally, the system may face further constraints when considering user profiles and

environmental factors. For instance, if the user is a minor and domain policies require

guardian consent for ticket bookings, the system must restrict the purchase and prompt

the user to provide authorization from a guardian. This demonstrates that LLMs must

move beyond simple tool selection and instead develop user-centric intelligence. Such
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intelligence would allow LLMs to understand the user’s context and make more appropriate,

personalized tool utilization.

To this end, we develop ToolSpectrum, a novel benchmark designed for evaluating

personalized tool utilization capabilities of LLMs, which is constructed through a three-

stage methodology. Specifically, we first collect commonly used Apps and APIs from

high-frequency user scenarios and manually introduce alternative Apps or APIs with

similar functionalities but tailored to meet the needs of different contexts (i.e., Temu3 and

Amazon). Next, we identify two critical factors influencing personalized tool utilization:

user profile and environment. These factors have been widely discussed in previous

personalization studies [60, 179], and are known to have a significant impact on human

behavior patterns [180, 181]. Finally, we simulate real-world user instructions and tool

call results, considering the toolset, user profile, and environment, leading to the final

ToolSpectrum, the comprehensive benchmark for personalized tool utilization.

We further investigate the impact of personalization on tool utilization through extensive

experiments using ToolSpectrum. The experimental results reveal two key insights: (1)

integrating personalization into tool utilization significantly improves its effectiveness, and

(2) current LLMs generally underperform on the task of personalized tool utilization.

5.6 Summary

In this chapter, we focus on evaluating the performance of existing LLMs on tool utilization

in terms of complex planning (i.e., AppBench), stateful tool utilization (i.e., DialogTool)

and personalized tool utilization (i.e., ToolSpectrum), considering the diversity and

complexity of practical applications. We hope these benchmarks and environments will

provide a comprehensive platform for systematically assessing and advancing language

agents’ tool-use capabilities, thereby fostering future research in building more adaptive,

context-aware, and capable autonomous agents.

3Temu is the competitor of Amazon with mostly lower prices.
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Chapter 6

Conclusion

In this thesis, on the method side, we establish the theory of agent by providing a unified

definition for autonomous agent from tool perspective, illustrating several principle to

guide the optimal agent behavior and several promising methods to achieve such goal via

prompting engineering, supervised fine-tuning and reinforcement learning, respectively.

On the evaluation side, we construct a series of targeted benchmarks to assess the tool-

utilization capabilities of existing language models in realistic settings, aiming to guide the

development of more capable and adaptive autonomous agents.

Despite recent progress and encouraging achievements in this area, many debates and

challenges still remain. In the following sections, we outline these discussions and highlight

potential research opportunities that can shape the next generation of agentic intelligence.

6.1 Thesis Summary and Reflections

Building a smart and truly autonomous agent has long been a central goal, aimed at assisting

or even replacing humans in performing complex tasks across diverse domains, such as

computer-use [5], web navigation [182] and mobile device control [6]. Despite significant

progress, the field of agent research remains in a formative stage [183, 184]. Fundamental

questions about what an agent is, what constitutes its desired behavior and objective, and

how such behavior and objective should be optimized are still under active debate. In detail,
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OpenAI defines agents as systems that independently accomplish tasks on human behalf 1,

which highlights the controllability of workflow execution to act reliably and consistently.

On the other side, Anthropic categorize agents as systems where LLMs dynamically direct

their own processes and tool usage, maintaining control over how they accomplish tasks

while considering other variations as agentic systems 2. More recently, DeepMind and

Microsoft start to emphasize the importance of world modeling for the agent [183, 185].

These conceptual ambiguities underscore the lack of a universally accepted definition of an

“agent” and highlight the need for principled frameworks to guide both theory and practice.

This thesis contributes toward this vision by proposing a systematic framework that

redefines agents as goal-oriented tool-use decision makers, capable of coordinating internal

cognitive tools and external physical tools to achieve pre-defined objectives efficiently [184].

Building on top of the framework, the core of agent lies in the alignment between knowledge

boundary (a.k.a, the boundary between internal world knowledge and external world

knowledge) and tool-use decision boundary (a.k.a., the boundary between internal cognitive

tools and external physical tools). From this viewpoint, the smart agent entails an agent’s

self-awareness to understand its own capabilities and limitations, while autonomous agents

implies minimizing external interactions by internalizing world knowledge within its

parametric space (e.g., internal world model). Our proposed methods and benchmarks

collectively illustrate how such agents can dynamically balance internal reasoning and

external tool use to improve task performance. While our framework offers a principled

foundation and roadmap, accompanying with strong empirical results across multiple

benchmarks, several limitations remain.

Different Relationships between Internal Knowledge and External Knowledge. We

mainly assume that the internal knowledge and external knowledge are two separated

parts for simplicity and generalization. In practice, it may not hold since the internal

1https://cdn.openai.com/business-guides-and-resources/a-practical-guide-to-building-agents.
pdf

2https://www.anthropic.com/engineering/building-effective-agents
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knowledge may overlap with external knowledge (a.k.a., knowledge overlap), and there

may exist knowledge conflict between these two sources (a.k.a., knowledge conflict). 1)

Knowledge Overlap: This highlights an important possibility: internal cognitive tools

and certain external physical tools can retrieve overlapping or even identical pieces of

knowledge, implying a potential for epistemic transferability between the two. For example,

a model may answer a factual question either by recalling internalized knowledge from its

parameters or by querying an external tool such as a search engine, both pathways leading

to the same correct answer [117, 111]. This interchangeability suggests that internal and external

tools can act as substitutes under certain conditions, raising further questions about when and how

agents should transfer, balance, or even fuse internal reasoning with external interaction for optimal

epistemic efficiency. In these cases, minimizing external physical tools is also maximizing

internal cognitive tools as evidenced by our OTC-PO work [111]. 2) Knowledge Conflict:

In some cases, internal and external knowledge sources may conflict [151, 152], leading to

inconsistent or contradictory information. This typically arises when the model retrieves

outdated, incomplete, or hallucinated content from its internal memory that contradicts

more up-to-date or accurate external sources. These situations highlight the importance

of epistemic calibration: the model must learn not only what it knows, but also when its

internal knowledge is unreliable and should be overridden by external input. Addressing

knowledge conflict requires mechanisms for knowledge arbitration, where agents resolve

discrepancies by evaluating the reliability, recency, and epistemic certainty of each source -

an open challenge for building robust decision boundaries under uncertainty.

Availability of Reliable Tools. The effectiveness of our framework depends on the avail-

ability and reliability of both internal cognitive tools and external physical tools. However,

these assumptions may not always hold in practice. Internally, language agents can suffer

from issues such as hallucination or overthinking, leading to incorrect reasoning or unneces-

sary cognitive steps [154, 186]. Externally, creating or accessing reliable physical tools can

be challenging, especially in resource-constrained or highly dynamic environments where

tools may be unavailable, outdated, or inconsistent [160, 176]. In addition, recent study try
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to create the Model Context Protocol (MCP) to unify diverse tool formats across domains

and applications [182]. How to design and create consistent, reliable tools that can support

diverse tasks across domains still remains an open challenge.

Self-evolving Agent. During the training and inference, the knowledge boundary and

tool-use decision boundary of agent naturally changes accordingly. It is foundamental for

agents to track the knowledge boundary and adjust the decision boundary accordingly. For

example, as the base model keeps scaling, the knowledge boundary naturally expands as

it learned a more accurate internal world model. After pretraining, a model’s parametric

knowledge boundary becomes relatively static, reflecting what its known knowledge that

can be elicited. In contrast, the tool-use decision boundary remains adjustable during the

model alignment phase. If a model uses internal tools for knowledge it does not actually

possess, this results in hallucinations or incorrect reasoning due to internal tool overuse,

Conversely, if the model defers to external tools despite already knowing the answer, it

wastes computation and time, an inefficiency stemming from external tool overuse. During

the problem-solving, the agent can accumulate certain knowledge and experience from

different tasks, leading to a self-evolving agent that can continually learn and adapt from

data, interactions, and experiences.

In summary, this thesis marks an important step toward realizing the vision of au-

tonomous and smart language agents. Yet, it also highlights that the field is far from settled.

Continued exploration of agent definitions, objectives, and behaviors will be essential to

fully unlock their potential in complex, real-world environments.

6.2 Safety, Personalization and Autonomy of Language Agents

As the level of autonomy of agent increases in practical situations, the requirements for

safety and personalization also become more demanding, creating an “impossible triangle"

between safety, personalization and autonomy.
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Safe and Reliable Agent. As language agents become more integrated into everyday

applications, especially when they are authorized to interact with external tools, ensuring

safe interactions with users and systems is critical [187, 188]. This involves not only

preventing harmful content at the model side but also implementing additional safety

measures at the system side. Prioritizing safety is essential because it builds trust in these

agents, which is key to their adoption and practical use.

Personalized Agent. Everyone prefers to have a personalized and exclusive agent. Since

people have diverse personalities, traits, and live in varied environments, tailoring an agent’s

responses and behavior to individual preferences results in more effective and satisfying

user experiences [23, 54]. Achieving high-quality personalization requires language agents

to model user intent and preference over time, which often involves dynamic user modeling,

continual adaptation, and privacy-preserving learning. Agents must balance responsiveness

with stability - adapting to new behaviors while maintaining consistency in long-term

preferences. Furthermore, personalized agents must be able to resolve ambiguity by

leveraging user-specific context, prioritize relevant information, and calibrate tool usage

according to the user’s preference. Ultimately, personalization plays a foundational role in

making language agents not only useful but also trusted collaborators - agents that feel less

like generic tools and more like intelligent assistants.

Autonomous Agent. The key value of agent actually depends on whether or not it can

improve the production efficiency, which is largely influenced by the degree of automation

it offers in completing tasks [182]. The success of automation depends on the creation of

agents that are not only efficient but also transparent and explainable in their decision-

making processes. This is particularly important when agents utilize both internal cognitive

tools and external physical tools. Cognitive tools can serve a crucial role by providing

explanations for the decisions made by the agent, thus offering clarity and rationale for the

subsequent use of physical tools.
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6.3 Future: Learn from Experience

More broadly, the autonomous agents will inhabit streams of experience, rather than short

snippets of interaction. It is time to embrace the era of experience [189] and build more

impactful, capable, and practically useful foundation agents, and even further agent society.

Multi-Agent Coordination. Multi-agent coordination extends our framework from in-

dividual agents aligning their decision and knowledge boundaries to a collective setting

where these boundaries are distributed across multiple agents. In this paradigm, each

agent operates with a local view (its own knowledge and decision boundaries), but con-

tributes to a shared task by reasoning about and interacting with other agents. The key

challenge is aligning these distributed boundaries to form a coherent collective intelligence.

To achieve this, agents must be equipped with mechanisms to communicate epistemic state,

and dynamically delegate subtasks to peers whose knowledge boundaries better match the

problem context. This requires structured communication protocols, role inference strategies,

and shared meta-cognitive modules that manage when to ask, respond, or act. Practically,

this can be developed through multi-agent reinforcement learning in environments where

cooperation is required for successful task completion, with reward functions encouraging

efficient division of cognitive and physical labor.

More Applications. The autonomous agents represent a paradigm shift beyond conver-

sational interfaces, evolving into indispensable, general-purpose collaborators. There are

many valuable applications. In scientific discovery (AI for Science), agents will accelerate

breakthroughs by autonomously generating hypotheses, synthesizing vast interdisciplinary

literature, and orchestrating complex computational or robotic experiments - dramatically

compressing research cycles in areas such as drug discovery and materials science [190]. In

education, personalized tutor agents will enable truly adaptive, lifelong learning experiences

by continuously tailoring instruction, offering nuanced real-time feedback, and providing

sustained mentorship at a scale previously unattainable. In software engineering, coding
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agents will act as proactive collaborators - debugging intricate systems, refactoring legacy

code, managing technical debt, and seamlessly integrating complex APIs to boost developer

productivity. This trajectory positions agents as a new layer of infrastructure for solving

complex, long-horizon challenges in real world.
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