

Theory of Agent: From Definition, to Behavior and Objective

(Toward a Theory of Agents as Tool-Use Decision-Makers)

Dr. Hongru WANG

<https://hrwise-nlp.github.io/>

University of Edinburgh

Content

- ❑ **New Agent Framework Inspired by Cognitive Science: Tool-use Decision Maker**
 - ❑ **Definition, Behavior and Objective of Agent**
- ❑ Theory of Agent Inspires LLM/Agent Principles, Opportunities and Challenges
 - ❑ Principle 1: Foundation --- Self-awareness for Knowledge Boundary and Decision Boundary
 - ❑ Principle 2: Uniqueness and Diversity --- Every LLM/Agent has a Unique Knowledge/Decision Boundary.
 - ❑ Principle 3: Dynamic Conservation --- “Combination” of Intelligence
 - ❑ A Recipe for Agentic Pretraining / SFT / RL / Prompting
- ❑ Future Direction and Conclusions
 - ❑ 1. The Scaling of both Reasoning and Acting
 - ❑ 2. The Scaling of both Agent and Env (or World Model)
 - ❑ 3. The Scaling of Time: Self-evolving Agent
 - ❑ Conclusions

Agents as the Last Mile of Intelligence to Users

Introducing deep research

An agent that uses reasoning to synthesize large amounts of online information and complete multi-step research tasks for you. Available to Pro users today, Plus and Team next.

Try on ChatGPT ↗

Try on ChatGPT ↗

0 Compile a research report on how the retail

- E-commerce vs. brick-and-mortar trends
- Consumer behavior shifts
- Supply chain challenges
- Emerging technologies (AI, automation, etc.)

OpenAI Deep F

 Manus AI [Home](#) [Manus AI Cases](#) [Request Invitation Code](#)

Manus AI - The AI Ass Thoughts Into

Manus AI is a world-leading general-purpose AI agent designed to help users efficiently complete various complex tasks. The name Manus comes from the Latin word for 'hand,' symbolizing its ability to execute tasks. It has achieved state-of-the-art (SOTA) performance across all three difficulty levels in the GAIA benchmark, far surpassing other AI assistants.

Get Started with Manus AI →

 Request Invitation Code

Manus

OSWorld: Benchmarking Multimodal Agents for Open-Ended Tasks in Real Computer Environments

^{e1}, Danyang Zhang¹, Jixuan Chen¹, Xiaochuan Li¹,
<sup>’oh Jing Hua¹, Zhoujun Cheng¹, Dongchan Shin¹, Fangyu Lei¹, Yitao Liu¹,
^{hou³, Silvio Savarese², Caiming Xiong², Victor Zhong⁴, Tao Yu¹}</sup>

³Salesforce Research, ³Carnegie Mellon University, ⁴University of Waterloo

pc Data Data Viewer Slides Twitter Discord

Computer-Using Agent

GAIA Leaderboard

over, requiring different levels of tooling and autonomy to solve. It is therefore divided in 3 levels, where level 1 should be breakable by very good LLMs, and level 3 indicate a strong jump in model capabilities.

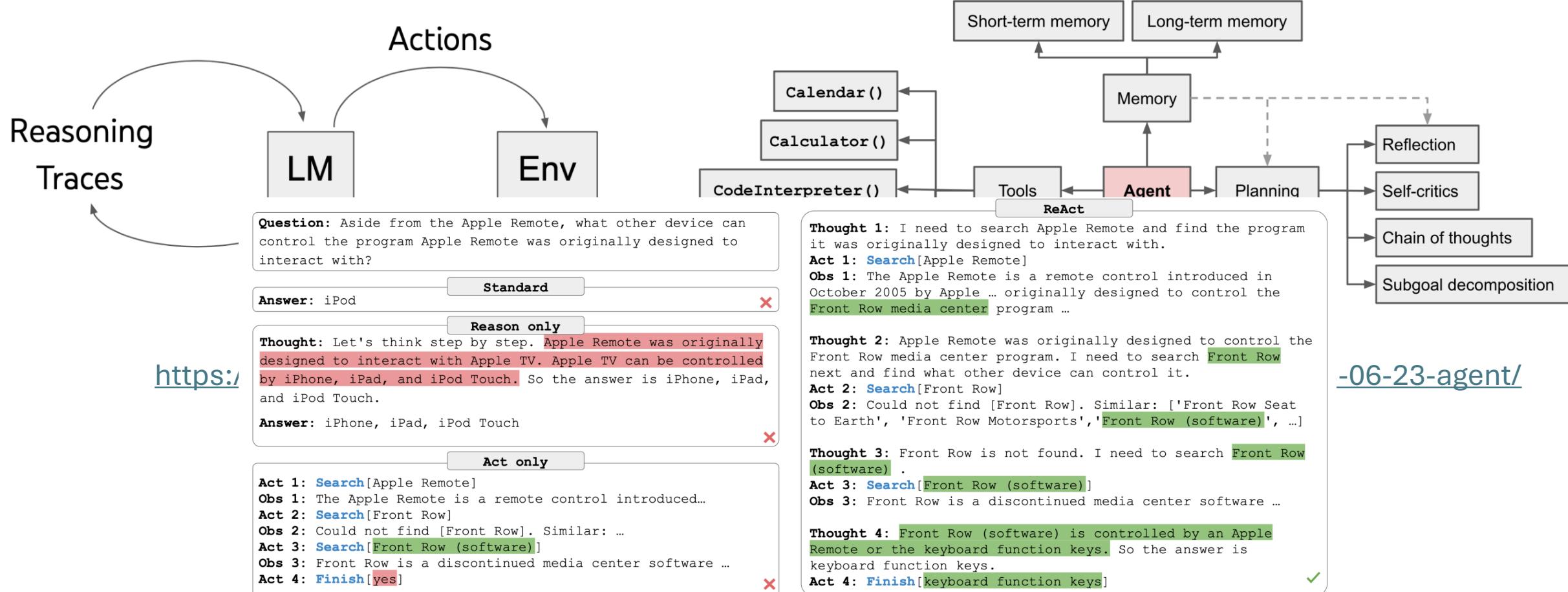
`.json`). Some questions come with an additional file, that can be found in the same folder and whose id is given in the field `file_name`.

verage scores over different runs when possible in our paper, we only report the best run in the leaderboard.

	organisation	Average score (%)	Level 1 score (%)	Level 2 score (%)	Level 3 score (%)
		99.39	98.11	100	100
-4, gpt-4o	Princeton AI Lab	99.39	98.11	100	100
		87.27	88.68	89.53	76.92
		87.27	96.23	90.7	57.49
Alita_v2.0	Princeton AI Lab	86.06	96.23	86.05	65.38
agent_2030	GPT family	83.03	92.45	87.21	50
Skywork_Super_Agents_v1.1	Skywork AI	82.42	92.45	83.72	57.49
Skywork_Super_Agents_v1	Skywork AI	88	92.45	79.07	57.49
Langrun_Agent_2.3	gemini 2.5 pro	79.39	88.68	89.23	57.09
Alita_v1.1	Princeton AI Lab	78.79	88.68	79.07	57.09
Hexo_v0.1	gemini-1.3, Claude-3.7	78.18	86.79	77.91	61.54
Alita_Agent_v0.1	claude-1.3, sonnet, erin-dn, austin-services	77.58	86.57	75.58	57.49

Alita reaches top 1 at GAIA (validation, 2025.6)

Previous / Existing Popular Agent Definitions



Agent = [Reasoning + Acting] * n

The Relationship Between Reasoning and Acting

Reasoning and acting are

- Different tokens for model
- Different tools / actions for the agent
- Different interactions for user
-

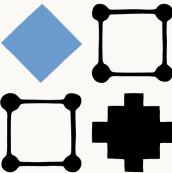
Shunyu Yao
@ShunyuYao12

To reason and act is the same thing

翻译帖子

下午10:56 · 24/6/24 来自 Earth · 865 次查看

Engineering at Anthropic



The "think" tool: Enabling Claude to stop and think in complex tool use situations

Published Mar 20, 2025 A new tool that improves Claude's complex problem-solving performance

```
{  "name": "think",  "description": "Use the tool to think about something. It will not obtain new information or change the database, but just append the thought to the log. Use it when complex reasoning or some cache memory is needed.",  "input_schema": {    "type": "object",    "properties": {      "thought": {        "type": "string",        "description": "A thought to think about."      }    },    "required": ["thought"]  }}
```

But they are epistemic equal means to acquire knowledge to solve the task.

Google Scholar cognitive tool

Articles About 5,860,000 results (0.13 sec)

Any time Since 2025 Since 2024 Since 2021 Custom range...

Sort by relevance Sort by date

Any type Review articles

include patents include citations Create alert

What are cognitive tools? DH Jonassen - *Cognitive tools for learning*, 1992 - Springer
... tools that extend the mind This workshop was about cognitive tools - computer-based tools ... Computer-based cognitive tools are in effect cognitive amplification tools that are part of ...
☆ Save Cite Cited by 508 Related articles All 5 versions

[PDF] Technology as cognitive tools: Learners as designers DH Jonassen - ITForum Paper, 1994 - tecfa.unige.ch
... Cognitive tools are generalizable computer tools that ... Cognitive tools and environments activate cognitive learning strategies and critical thinking. They are computationally based tools ...
☆ Save Cite Cited by 383 Related articles All 4 versions >>

[book] Computers as Cognitive Tools: 1 SP Lajoie, SJ Derry - 1993 - books.google.com
... are employed, and the forms of "cognitive tools" that are embedded within systems to help ... computers as tools for enhancing learning. Computers as Cognitive Tools is appropriate for ...
☆ Save Cite Cited by 924 Related articles All 10 versions >>

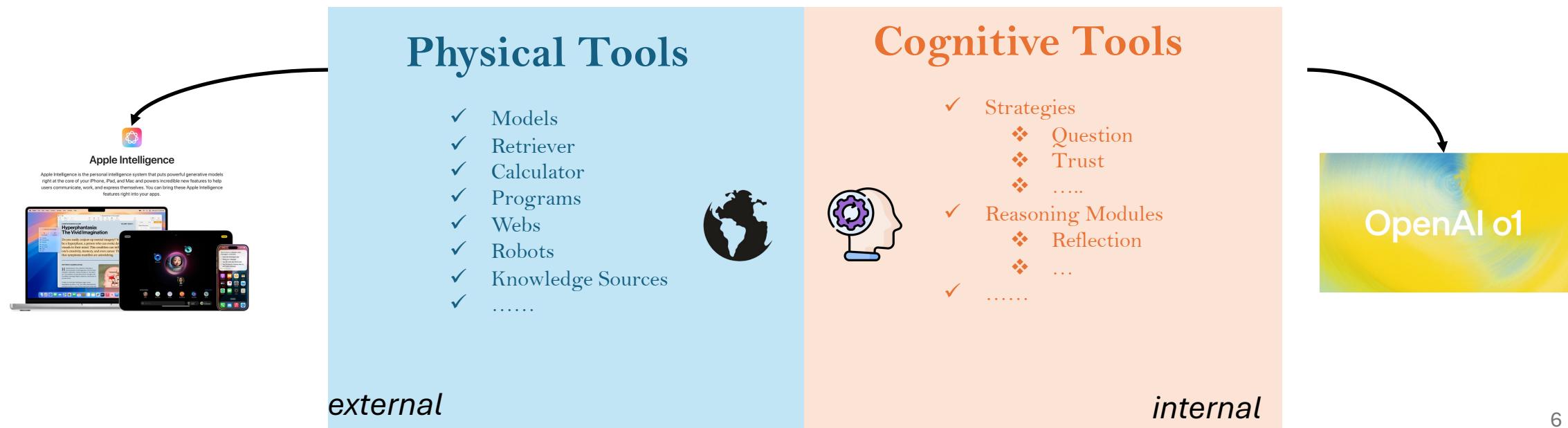
[book] Cognitive tools for learning PAM Klemmer, DH Jonassen, JT Mayes - 1992 - research.utwente.nl
... to address the theme of cognitive tools as discussed in this book ... tools and was the main reason that 'cognitive tools' became ... during instruction allows for cognitive amplification. Some ...
☆ Save Cite Cited by 342 Related articles All 8 versions >>

<https://ysymyth.github.io/The-Second-Half/>

<https://www.anthropic.com/engineering/clause-think-tool>

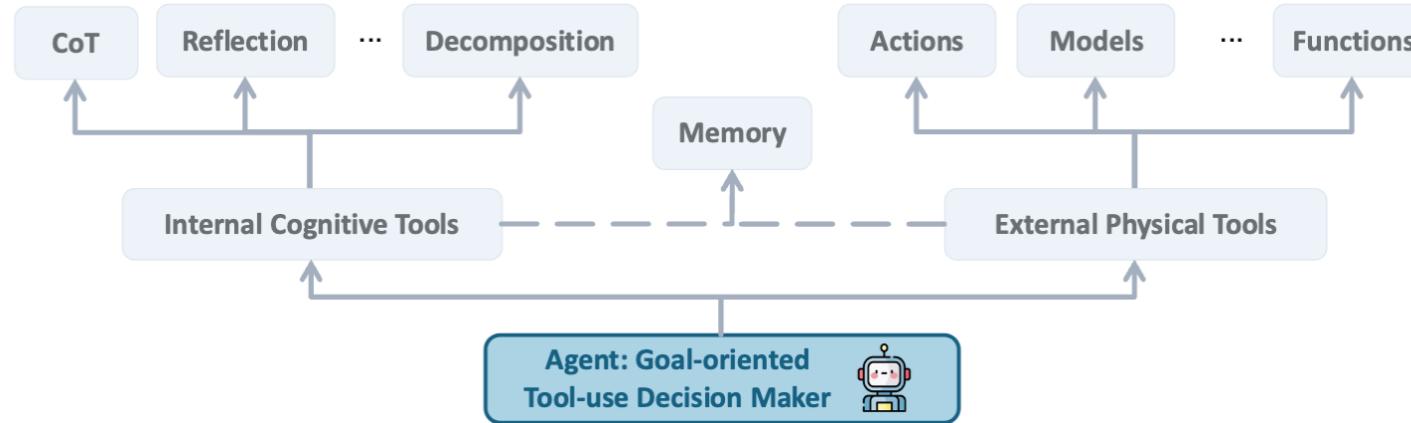
Reasoning ≈ Acting = Tools

- Tool is defined as object that can extend an individual's ability to modify features of the surrounding environment or help them accomplish a particular task in general. It can be **internal cognitive/conceptual tools** (i.e., *reasoning*) and **external physical tools** (i.e., *acting*).
 - **Internal cognitive/conceptual tool** refer to specifies an internal cognitive mechanisms that aids systematic or investigative thought, to retrieve internal knowledge of agent about current state (e.g, **internal world model**).
 - **External physical tool** refer to external modules that are invoked by a rule or a specific token and whose outputs are incorporated into the context of agent (e.g., **external world model**).

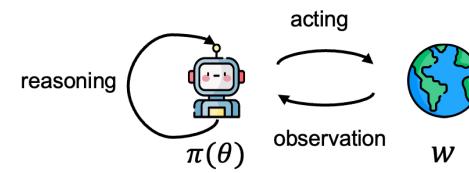


New Agent Definition

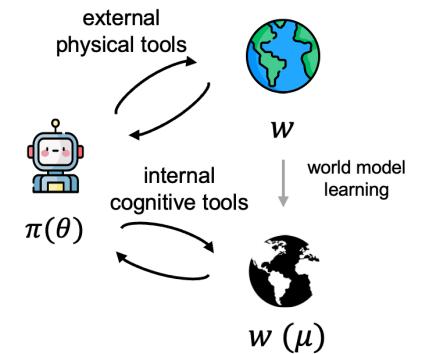
- An agent is an entity that **coordinates** internal cognitive tools (e.g., reflection) and external physical tools (e.g., function callings) to acquire knowledge in order to achieve a specific goal.



- Internal cognitive tools and external physical tools are **epistemic equal means** to acquire knowledge to solve the task, as shown in Figure (b).

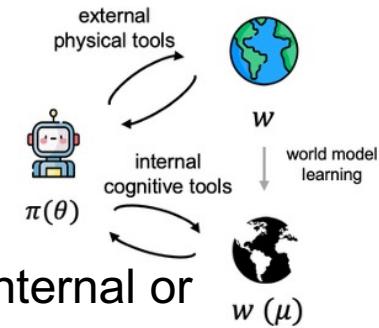


(a) ReAct-based Agent



(b) Tool-integrated Agent

Three Advantages of Tool-integrated Agents



- **Unified Format:** $\tau = (t_1, k_1, t_2, k_2, \dots, t_n, k_n)$
 - t_n, k_n stands for tool call and returned knowledge at n_{th} step. The tool could be either internal or external.
- **Flexible and Robust**
 - It degrades to previous ReAct paradigm if we consider the internal tools and ignore the whole reasoning part, then it becomes $(r_1, t_1, k_1, \dots, r_n, t_n, k_n)$ here t_n, k_n only
 - If we solely consider internal tools, it is proved that simply outcome-based reward and tool utilization such as reflection and decomposition to solve the problem in LLMs (i.e., DeepSeek-R1). Alternatively, simply outcome-based reward also triggers tool utilization as evidenced in recent studies (i.e., Search-R1, ToRL, OTC-PO).
- **Potential Next Scaling Law**
 - **Next Tool/State Prediction:** Just as next-token prediction enables LLMs to learn a compressed representation of the world from text, next-tool prediction allows agents to learn procedural knowledge through interaction.
 - Procedural knowledge scaling ?= Context / experience scaling, leading to self-evolving agent

What is the analogue of next-token prediction for reinforcement learning? To get true generality, you want to be able to convert everything in the world to an environment+reward for training.

翻译帖子

下午10:50 · 27/2/25 · 5.4万次查看

22

33

293

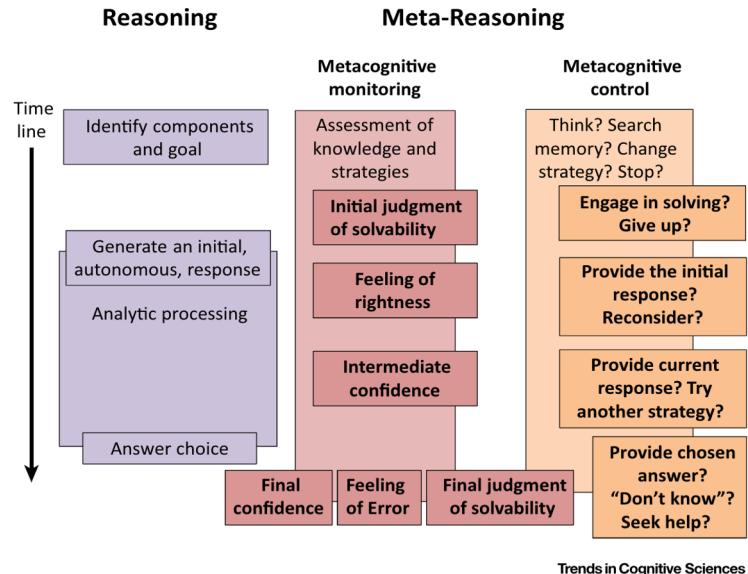
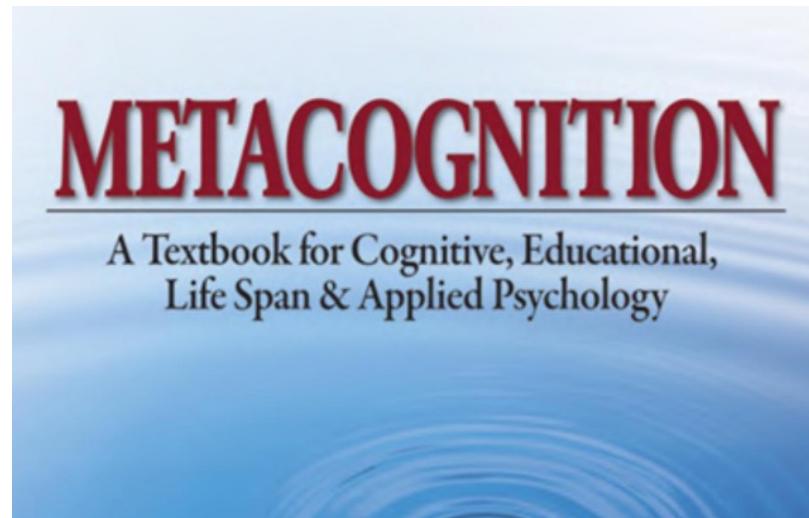
180

Content

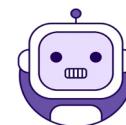
- **New Agent Framework Inspired by Cognitive Science: Tool-use Decision Maker**
 - Definition, Behavior and Objective of Agent
- **Theory of Agent Inspires LLM/Agent Principles, Opportunities and Challenges**
 - Principle 1: Foundation --- Self-awareness for Knowledge Boundary and Decision Boundary
 - Principle 2: Uniqueness and Diversity --- Every LLM/Agent has a Unique Knowledge/Decision Boundary.
 - Principle 3: Dynamic Conservation --- “Combination” of Intelligence
 - A Recipe for Agentic Pretraining / SFT / RL / Prompting
- Future Direction and Conclusions
 - 1. The Scaling of both Reasoning and Acting
 - 2. The Scaling of both Agent and Env (or World Model)
 - 3. The Scaling of Time: Self-evolving Agent
 - Conclusions

How to coordinates internal and external tools?

- How **human** call different tools in mind: meta-reasoning theory, metacognition,



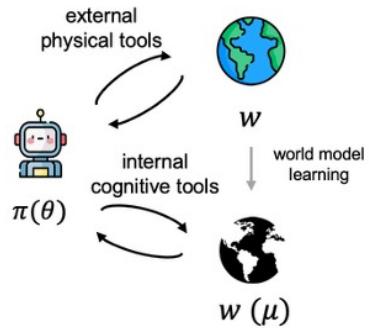
- How **agent** call different tools?
 - The key also lies in monitoring and control



Monitoring

*Judgement of solvability
Intermediate confidence
Reward model
Uncertainty estimation*

...

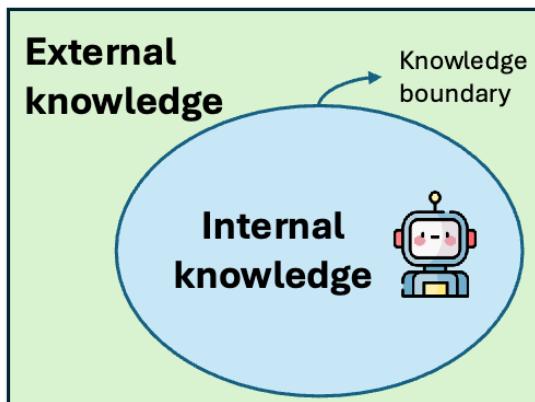
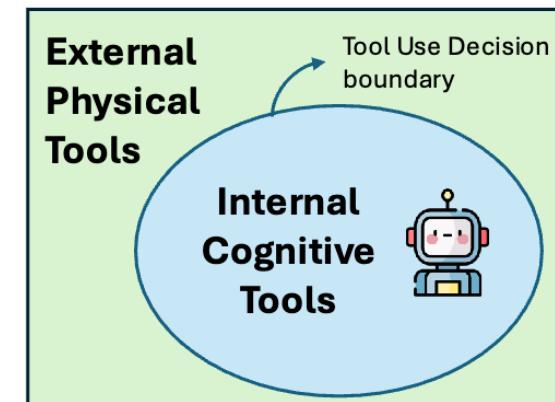


Control

*Cognitive tools
Physical tools
...*

Two Concepts for Monitoring and Control

- To make things easier, let's assume all knowledge is correct, and can be accessed via tools, and there is a way to accurately identify the knowledge boundary.

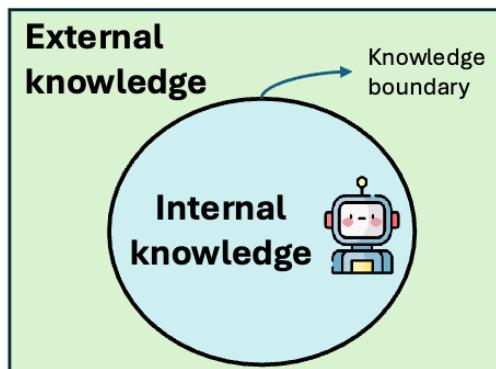


- We hope that LLMs can **utilize internal cognitive tools to gain internal knowledge** while **only call external tools to gain external knowledge** during problem-solving processing. (explain later)
 - The challenge here is **self-aware tool utilization**

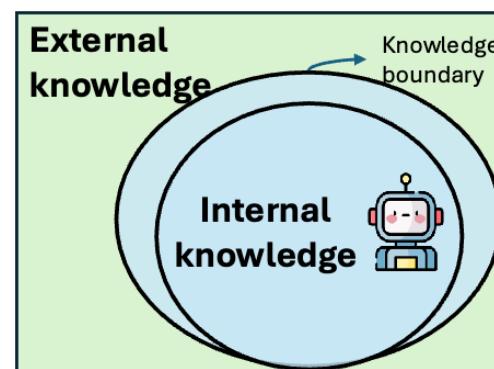
Optimize Tool Use Decision Boundary to match Knowledge Boundary (知行合一)

Principle 1: Foundations

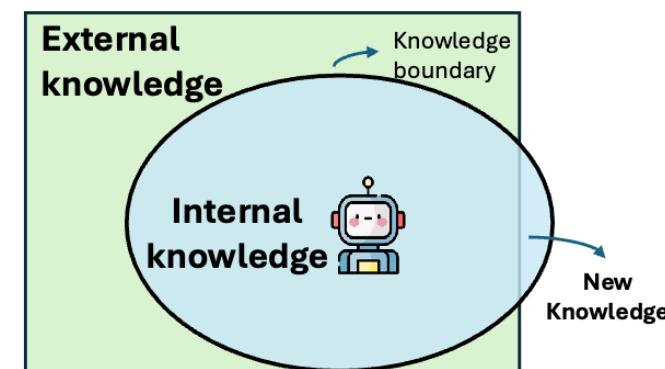
- **Lemma 1.1:** *Generally*, as time advances, the model's capabilities evolve and the knowledge boundary expands.
- **Lemma 1.2:** *Specifically*, the knowledge/decision boundaries can be redistributed, e.g., through continual training, allowing for strengthening in specific domains.



(a) Knowledge Boundary



(b) Knowledge Expansion

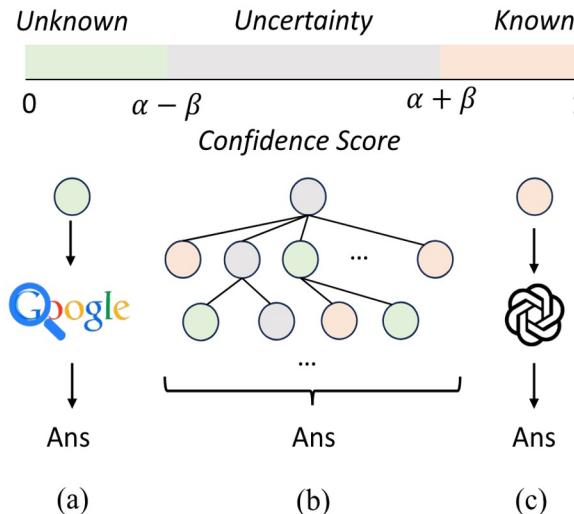


(c) New Knowledge Discovery

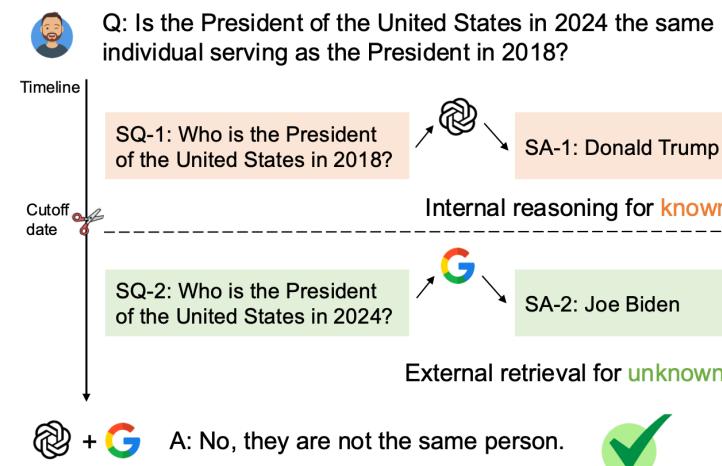
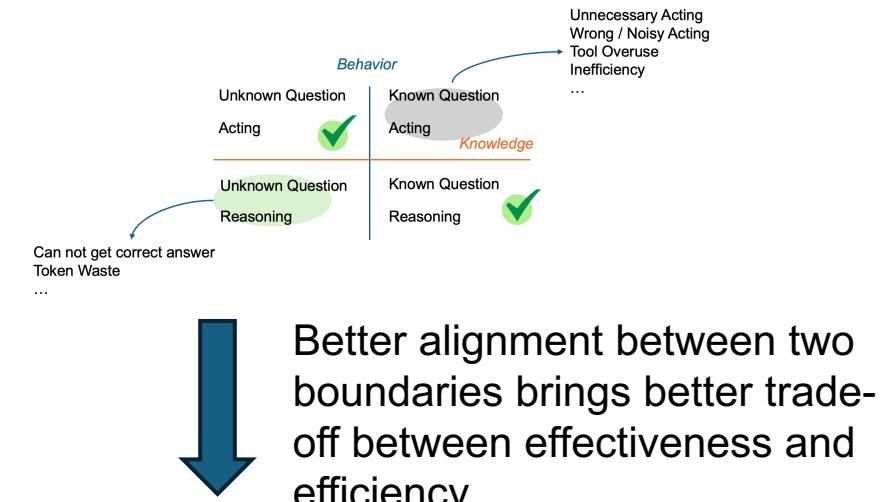
Self-DC: When to Reason and When to Act?

- **Single Known.** The question contains no sub-questions and can be solved using internal knowledge of LLMs, such as with the generate-then-read method.
- **Single Unknown.** The question contains no sub-questions and can only be solved using external knowledge, such as with the retrieve-then-read method.
- **Compositional Known.** The question contains several sub-questions, and each sub-question is *Single Known*.
- **Compositional Unknown.** The question contains several sub-questions, and at least one sub-question is *Single Unknown*.

First Compositional unknown Question Answering dataset (CuQA)



- Defining reasoning and acting as different functions / tools. *Call these functions leveraging model-based planning, and meta-reasoning theory (confidence scores).*
- Solving compositional/complex problems in *different level of granularity*.
- **Simple and Scalable** Purely based on self-aware capabilities of LLMs. As LLM evolves, the framework evolves.

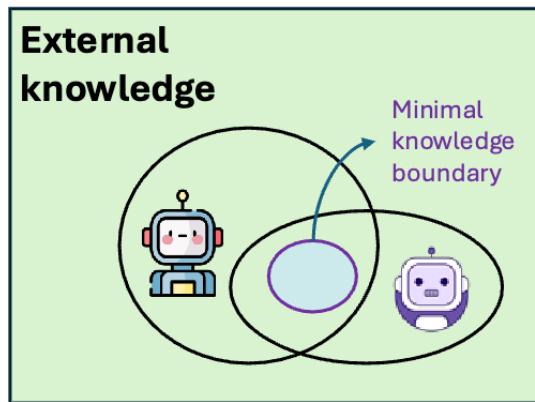
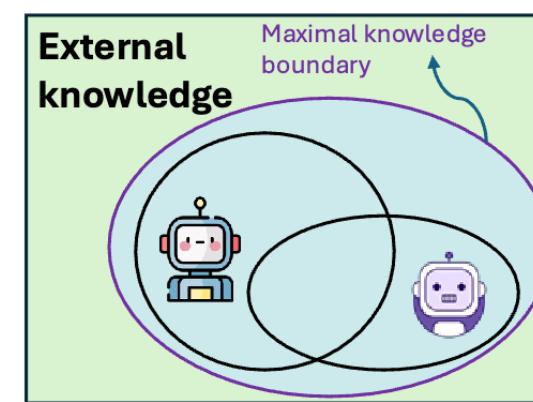


Methods	#R	CuQA			FreshQA		
		EM	F1	Acc [†]	EM	F1	Acc [†]
<i>w/o retrieval</i>							
Direct	0	29.0	19.4	46.4	27.2	17.3	53.0
CoT	0	28.8	18.2	46.0	29.2	18.1	53.8
Few-shot-CoT*	0	43.0	3.2	50.8	35.0	9.1	55.4
GenRead	0	29.6	29.2	47.4	26.8	27.7	52.0
<i>w/ retrieval</i>							
RR	<i>n</i>	32.0	31.6	55.4	35.2	32.6	63.4
REFEED	<i>2n</i>	26.2	33.5	51.8	28.8	34.5	57.4
IRCoT	<i>3n</i>	47.8	13.5	64.6	34.2	17.8	61.4
Self-Ask*	<i>0-n</i>	19.8	3.8	48.4	5.6	9.8	59.0
ITER-RETGEN*	<i>2n</i>	23.4	12.6	50.9	31.2	21.1	55.8
<i>Self-DC (verb)</i>	<i>0-n</i>	34.0	32.2	53.8	30.2	30.2	59.8
<i>Self-DC (prob)</i>	<i>0-n</i>	36.4	36.5	56.4	37.4	36.6	66.4

First Framework to consider relationship between reasoning and acting

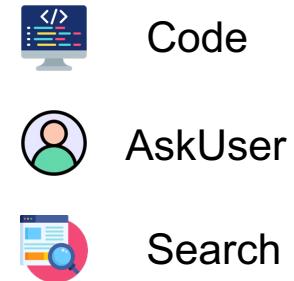
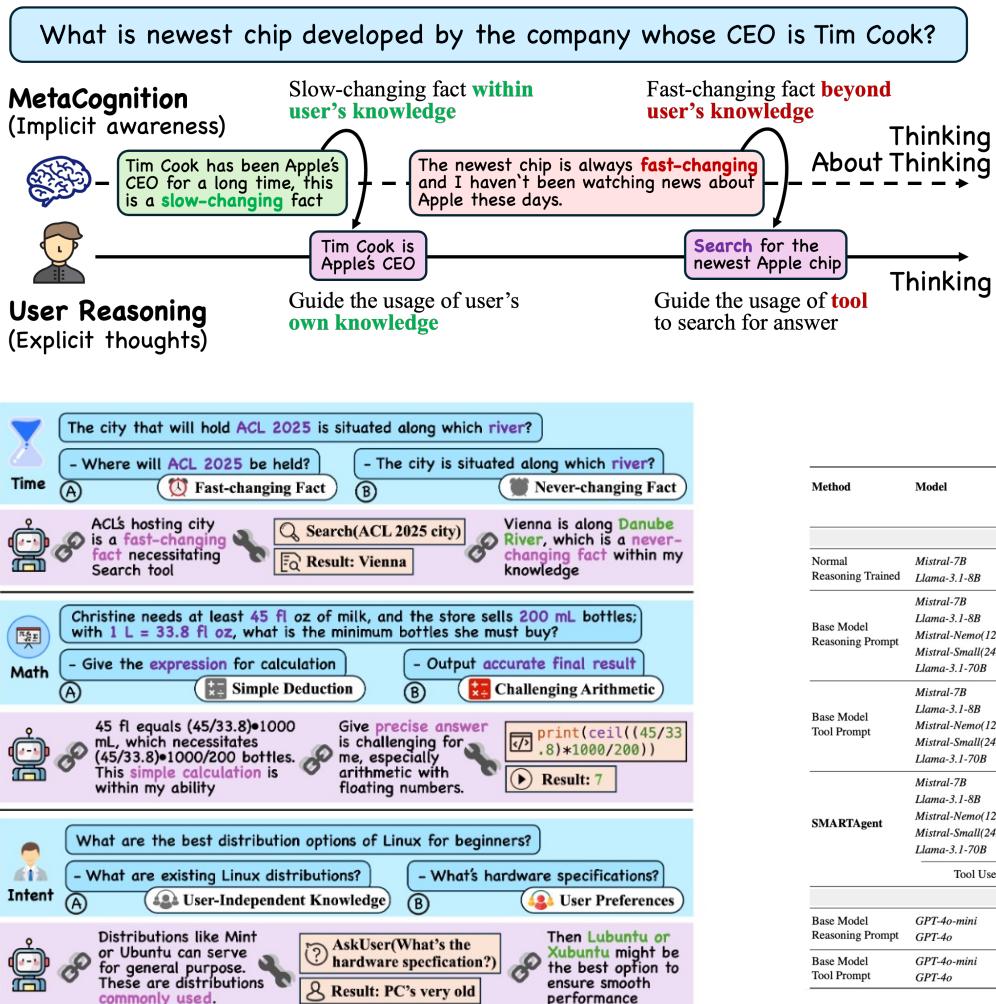
Principle 2: Uniqueness and Diversity

- **Lemma 2.1:** Each model has its own knowledge boundary and decision boundary.
- **Lemma 2.2:** There exist minimal and maximal knowledge (and decision) boundaries across *all* models.



SMART: Self-Aware Agent for Tool Overuse Mitigation

- We adapt three established dataset to create the meta-reasoning chain:
 - Math: **simple arithmetic** v.s. **challenging calculation** (e.g., MATH)
 - Intention: **commonsense** v.s. **user specific intentions** (e.g., Intention-in-Interaction)
 - Time: **never-changing facts** v.s. **fast-changing facts** (e.g., FreshQA)



SMARTAgent achieves **higher accuracy with lower tool call number** and **higher confidence in decision**

One-fit-for-all strategy is approximating Maximal Knowledge Boundary (lemma 2.2)

Method	Model	Math (MATH)		Time (FreshQA)		Intention (Intention-in-Interaction)		
		Tool Used [†] (Times)	Accuracy [†] (%)	Tool Used [†] (Times)	Accuracy [†] (%)	Tool Used [†] (Times)	Missing Details Recovery [†] (L ₃ / L ₂ , %)	Summarized Intention Coverage [†] (%)
<i>Open-Source</i>								
Normal Reasoning Trained	Mistral-7B Llama-3.1-8B	0.00 0.00	17.00 41.00	0.00 0.00	48.00 48.00	0.00 0.00	41.86 / 43.84 38.37 / 42.49	-
Base Model Reasoning Prompt	Mistral-7B Llama-3.1-8B Mistral-Nemor(12B) Mistral-Small(24B) Llama-3.1-70B	0.00 0.00 0.00 0.00 0.00	17.25 53.00 47.00 72.25 70.00	0.00 0.00 0.00 0.00 0.00	29.00 26.00 33.00 34.00 36.00	0.00 0.00 0.00 0.00 0.00	37.21 / 33.06 40.70 / 25.76 44.19 / 28.37 41.86 / 31.82 41.86 / 29.24	-
Base Model Tool Prompt	Mistral-7B Llama-3.1-8B Mistral-Nemor(12B) Mistral-Small(24B) Llama-3.1-70B	3.90 1.93 2.35 1.55 3.53	13.25 51.00 46.00 76.00 67.50	1.67 2.05 1.19 1.73 2.08	49.00 56.00 59.00 62.00 63.00	3.80 3.77 1.80 2.52 2.71	48.84 / 21.70 54.76 / 25.90 31.35 / 5.82 45.74 / 33.62 45.74 / 35.96	63.04 70.20 59.27 78.20 61.68
SMARTAgent	Mistral-7B Llama-3.1-8B Mistral-Nemor(12B) Mistral-Small(24B) Llama-3.1-70B	0.60 _[1.30] 0.88 _[1.05] 0.82 _[1.53] 0.79 _[1.06] 0.94 _[2.59]	22.75 _[-5.50] 54.75 _[-1.75] 49.50 _[-2.50] 69.75 _[-6.25] 72.50 _[-2.50]	1.00 _[0.67] 1.05 _[1.00] 1.00 _[0.18] 1.00 _[1.07] 1.01 _[1.07]	64.00 _[15.00] 67.00 _[11.00] 70.00 _[11.00] 66.00 _[14.00] 66.00 _[13.00]	3.60 _[0.20] 3.80 _[0.03] 3.34 _[1.54] 3.89 _[1.37] 3.51 _[0.80]	74.42 _[25.58] / 65.44 _[-21.60] 81.40 _[26.64] / 67.41 _[-24.92] 77.91 _[181.72] / 62.15 _[-133.78] 74.42 _[28.68] / 68.87 _[-35.25] 68.60 _[22.86] / 58.15 _[-22.19]	81.76 _[-18.72] 78.28 _[-18.08] 82.30 _[-23.03] 84.99 _[-6.79] 86.09 _[-24.41]
<i>Tool Used Macro-Average Decrease (%)</i>								
24.00								
<i>Closed-Source</i>								
Base Model Reasoning Prompt	GPT-4o-mini GPT-4o	0.00 0.00	73.00 79.50	0.00 0.00	44.00 47.00	0.00 0.00	45.35 / 32.41 38.37 / 28.54	-
Base Model Tool Prompt	GPT-4o-mini GPT-4o	2.55 0.27	54.50 79.25	1.06 1.01	56.00 65.00	1.91 1.17	50.00 / 26.90 40.70 / 15.61	76.44 86.80

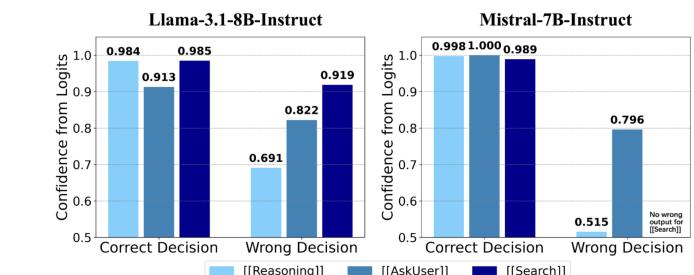


Figure 5: Confidence analysis shows that SMART effectively enhances the model's decision-making confidence in selecting the correct reasoning approaches.

Principle 3: Dynamic Conservation of Knowledge

- **Lemma 3.1:** At any time step t , the total world knowledge W_t is fixed and identical across all models.
- **Lemma 3.2:** For any task or query q and model m , there exists a minimal and fixed epistemic effort $N(q, m)$ allocated between internal and external sources, that is necessary to solve the task, such as $N(q, m) = K_{int} + K_{ext}$.
 - **Task-Model dependency Optimization:** $N(q, m)$ is jointly determined by the complexity of the task and the capabilities of the model.
 - **Capability Equivalence via Dynamic Offloading:** Even models with limited internal capacity can achieve same performance by dynamically offloading reasoning or retrieval steps to more capable tools or agents. There is no difference between 8B ($K_{ext} \rightarrow N$) and 70B ($K_{int} \rightarrow N$) from Agent perspective considering models as one of tools.
 - **Agent Objective:** Pursuing the optimal behavior that minimize interactions while managing latency, cost, and constraints, besides the final correctness.

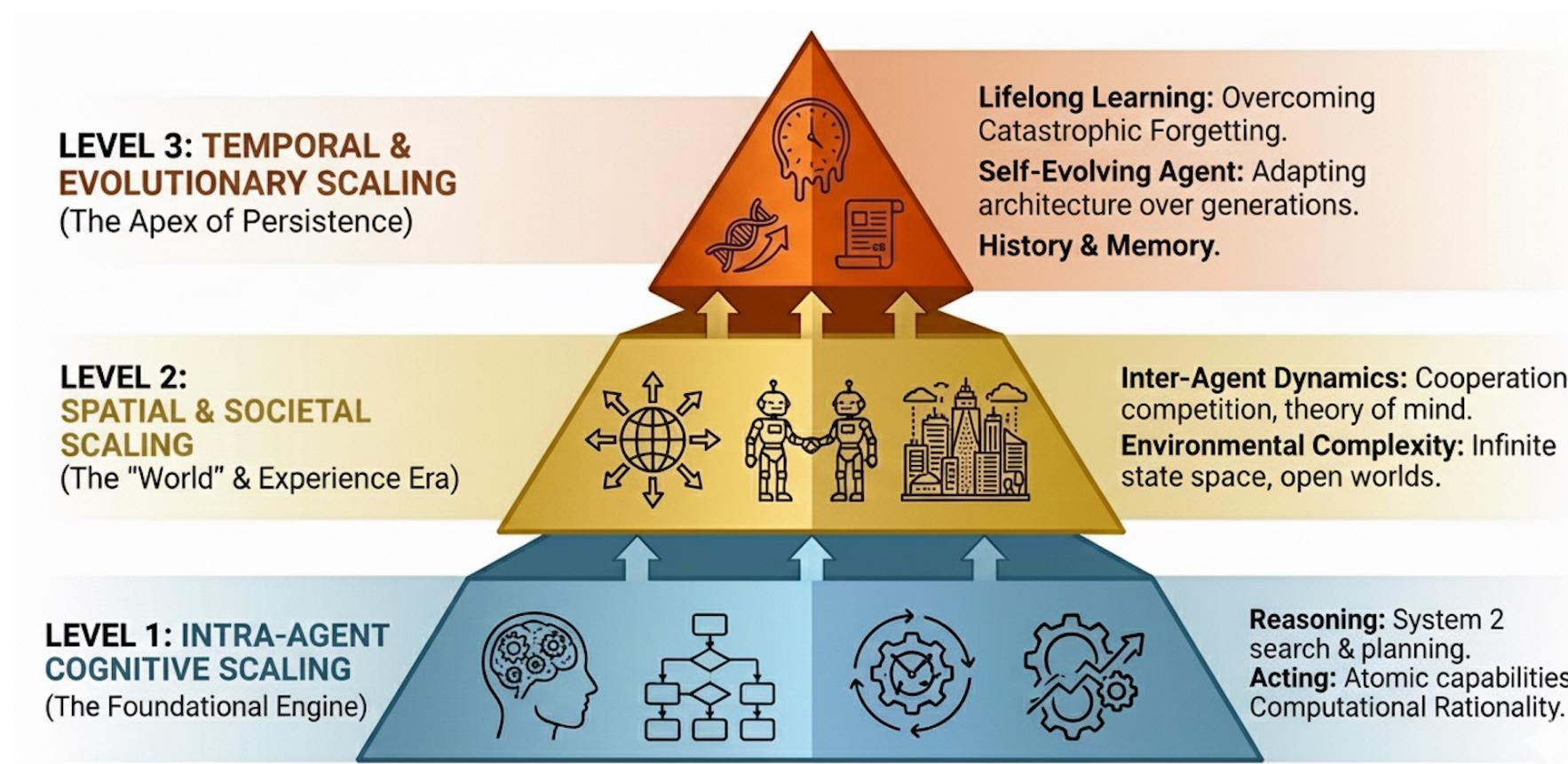
A Roadmap to Autonomous Agent

- **Agentic Pretraining:** Next tool prediction, As research trends toward unified agent architectures, modeling all forms of interaction (API calls, UI navigation, or environment manipulation) as structured, learnable outputs opens the door to a new kind of scaling law: one that governs knowledge acquisition, not just compression.
 - Unified Format: $\tau = (t_1, k_1, t_2, k_2, \dots, t_n, k_n)$
 - Data Collection: It is extremely challenging to collect massive pretraining interaction corpus (only Big Companies)
- **Agentic Supervised-finetuning:** It is important to collect model-task-specific trajectories instead of collecting one trajectory for all models due to lemma 2.1. Additionally, it is more effective to leverage the lemma 2.2 by utilizing maximal knowledge boundary to build one-fits-all dataset.
- **Agent Reinforcement Learning:** Reinforcement learning (RL) offers a more promising path for aligning a model's decision-making with its own knowledge boundary, as agents can learn from experience how to adaptively use tools. The key challenge lies in designing reward functions that go beyond correctness.
- **Agent Prompting:** Once the model is trained, previous numerous studies utilize prompt engineering to develop task-specific agentic workflows across various domains. Despite achieving exceptional performance on complex tasks, few of these approaches rigorously evaluate behavioral optimality, such as internal cognitive tool overuse (i.e., overthinking) or external physical tool overuse (i.e., overacting).

Content

- **New Agent Framework Inspired by Cognitive Science: Tool-use Decision Maker**
 - Definition, Behavior and Objective of Agent
- **Theory of Agent Inspires LLM/Agent Principles, Opportunities and Challenges**
 - Principle 1: Foundation --- Self-awareness for Knowledge Boundary and Decision Boundary
 - Principle 2: Uniqueness and Diversity --- Every LLM/Agent has a Unique Knowledge/Decision Boundary.
 - Principle 3: Dynamic Conservation --- “Combination” of Intelligence
 - A Recipe for Agentic Pretraining / SFT / RL / Prompting
- **Future Direction and Conclusions**
 - 1. The Scaling of both Reasoning and Acting
 - 2. The Scaling of both Agent and Env (or World Model)
 - 3. The Scaling of Time: Self-evolving Agent
 - Conclusions

Three Levels of Scaling Simultaneously



Scaling of Time

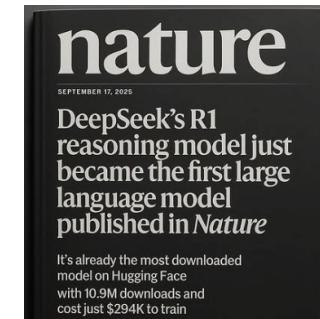
Scaling of Agent and Environment

Scaling of Reasoning and Acting

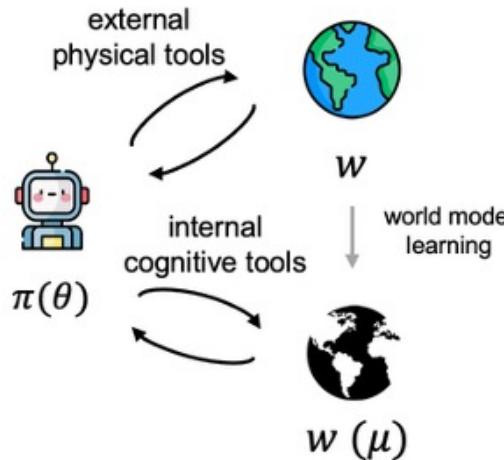
Future Direction 1: Scaling of both Reasoning and Acting

RL has been proven effective in scaling reasoning (i.e., DeepSeek-R1) and acting (i.e., Kimi-K2) capabilities, respectively.

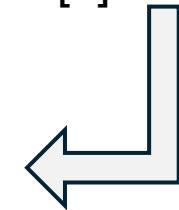
However, how to scale them together without losing any part of capabilities?



*"The autonomous machine intelligence is designed to **minimize the number of actions** a system needs to take in the real world to learn a task. It does so by learning a world model that capture as much knowledge about the world as possible without taking actions in the world."* --- Yann Lecun [1]



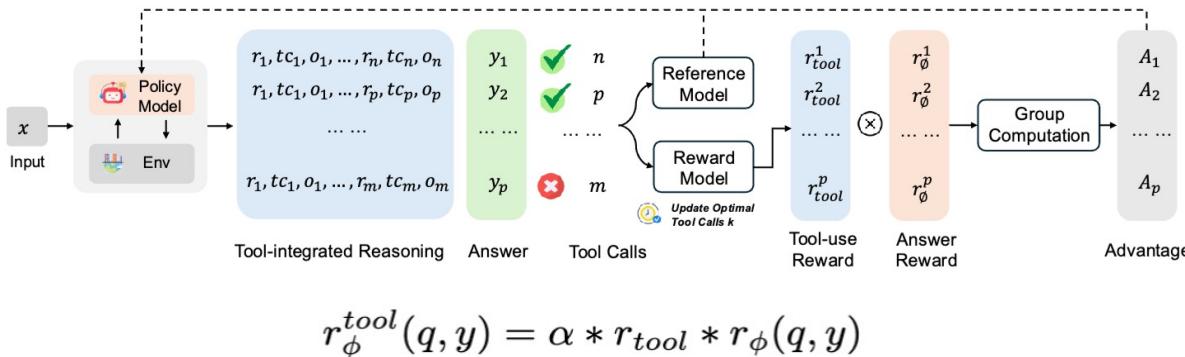
This is both the goal itself and a means of achieving it.



As long as the agent can complete the task successfully, minimizing external physical tools means maximizing the internal tools by our **Principle 3**, also means the agent can internalize the external environment partly or fully (i.e., learn a better internal world model).

[1] A Path Towards Autonomous Machine Intelligence

Acting Less is Reasoning More (OTC-PO)



A simple, faster, and generalizable **OTC-PO algorithm** to encourage the model to use fewer tool calls to solve the problem

Question: Are Giuseppe Verdi and Ambroise Thomas both Opera composers ?
 Answer: Yes

Search-R1-PPO: <think> I need to determine if Giuseppe Verdi and Ambrose Thomas are both opera composers. </think>
 <search> Giuseppe Verdi </search> *Undesirable tool use behavior*
 <observation> ... </observation>
 <search> Ambroise Thomas </search> *Undesirable tool use behavior*
 <observation> ... </observation>
 <search> Are Giuseppe Verdi and Ambroise Thomas both Opera composers? </search>
 <observation> ... </observation>
 <think> Based on the observations, both Giuseppe Verdi and Ambroise Thomas are described as composers, specifically opera composers. </think>
 <answer> yes </answer> (Tool Calls = 3)

Cognitive Offloading fosters dependency on external tools, causes memory capabilities to diminish, and inhibits the development of internal reasoning..

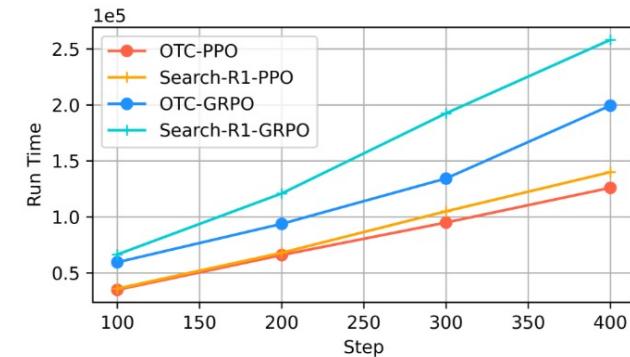
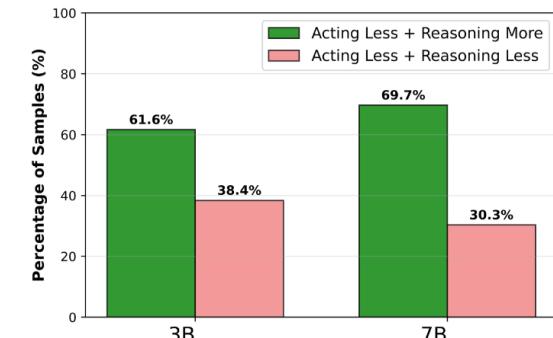
OTC-PPO: <think> First, I need to determine if Giuseppe Verdi and Ambrose Thomas are both opera composers. </think>
 <search> Giuseppe Verdi and Ambroise Thomas both Opera composers </search>
 <observation> ... </observation>
 <think> Based on the search results, Giuseppe Verdi and Ambroise Thomas are both known as opera composers. </think>
 <answer> yes </answer> (Tool Calls = 1)

Search-R1-GRPO: <think> To answer this question, I need to check if both Giuseppe Verdi and Ambroise Thomas are composers of opera. I don't have immediate access to this knowledge, but I can conduct a search to find out. </think>
 <search> who are Giuseppe Verdi and Ambroise Thomas and their works </search>
 <observation>...</observation>
 <think>From the information gathered, ... This confirms Thomas as an opera composer. Next, I will search on Giuseppe Verdi. </think>
 <search> who is Giuseppe Verdi </search> *Undesirable tool use behavior*
 <observation>...</observation>
 <think>Giuseppe Verdi is named as an Italian opera composer of prominent stature. This confirms Verdi as an opera composer. Answering the initial question: Question: Are Giuseppe Verdi and Ambroise Thomas both Opera composers? </think>
 <answer> yes </answer> (Tool Calls = 2)

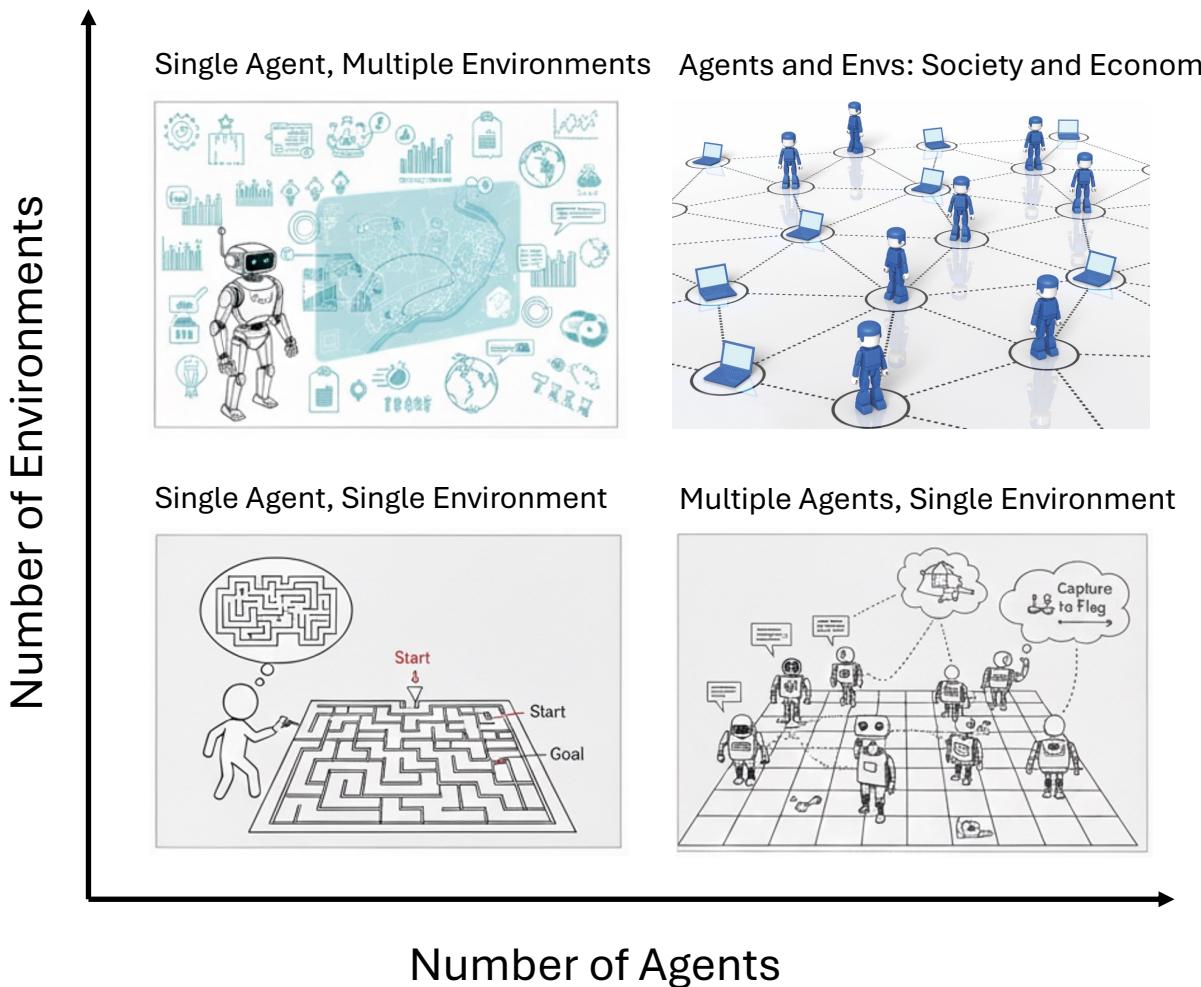
OTC-GRPO: To answer the question of whether Giuseppe Verdi and Ambroise Thomas are both Opera composers, let's first reason through the information:
 1. Giuseppe Verdi is a well-known Italian opera composer. He is famous for his numerous operas, including "Rigoletto," "La Traviata," and "Aida."
 2. Ambroise Thomas is a French opera composer. He is known for his operas such as "Mignon" and "Hamlet."
 Based on this reasoning, both Giuseppe Verdi and Ambroise Thomas are indeed Opera composers.

Models	NQ			HotpotQA		
	EM (↑)	TC (↓)	TP (↑)	EM (↑)	TC (↓)	TP (↑)
Owen2.5-3B(-Base)						
R1-Base	0.226	-	-	0.201	-	-
SFT	0.249	-	-	0.186	-	-
RAG	0.348	1.0	0.348	0.255	1.0	0.255
IRCoT	0.111	10.0	0.011	0.164	10.0	0.016
Search-R1-PPO	0.403	1.738	0.232	0.279	1.716	0.163
Search-R1-GRPO	0.404	1.426	0.283	0.312	1.802	0.173
OTC-PPO	0.355	1.010 (Y 41.9%)	0.351 (A 31.3%)	0.260	1.026 (Y 40.2%)	0.253 (A 35.2%)
OTC-GRPO	0.444	1.008 (Y 29.3%)	0.440 (A 35.5%)	0.365	1.387 (Y 23.0%)	0.263 (A 32.0%)
Qwen2.5-7B(-Base)						
R1-Base	0.270	-	-	0.242	-	-
SFT	0.318	-	-	0.217	-	-
RAG	0.349	1.0	0.349	0.299	1.0	0.299
IRCoT	0.224	9.999	0.022	0.133	9.982	0.013
Search-R1-PPO	0.449	3.282	0.136	0.380	3.741	0.102
Search-R1-GRPO	0.399	1.697	0.235	0.341	2.109	0.162
OTC-PPO	0.446	1.040 (Y 68.5%)	0.429 (A 215.4%)	0.383	1.464 (Y 50.9%)	0.262 (A 156.9%)
OTC-GRPO	0.444	0.990 (Y 41.7%)	0.448 (A 90.6%)	0.366	1.005 (Y 52.3%)	0.364 (A 124.7%)

Less tool calls, less time, less money, but more reasoning, more intelligence, more scalable.



Future Direction 2: Scaling of both Agent and Env



Scaling Environments for LLM Agents in the Era of Learning from Interaction: A Survey

Yuchen Huang[♡] Sijia Li[♡] Minghao Liu[♡] Wei Liu[♦] Zhiyuan Fan[♡]
Yi R. (May) Fung[♡]

[♡]Hong Kong University of Science and Technology
[♦]King's College London
{yhuanggn, yrfung}@cse.ust.hk

Google Research Google DeepMind

Towards a Science of Scaling Agent Systems

Yubin Kim^{1,3,†}, Ken Gu¹, Chanwoo Park³, Chunjong Park², Samuel Schmidgall², A. Ali Heydari¹, Yao Yan¹, Zhihan Zhang¹, Yuchen Zhuang², Yun Liu¹, Mark Malhotra¹, Paul Pu Liang³, Hae Won Park³, Yuzhe Yang¹, Xuhai Xu¹, Yilun Du¹, Shwetak Patel¹, Tim Althoff¹, Daniel McDuff¹ and Xin Liu^{1,†}
¹Google Research, ²Google DeepMind, ³Massachusetts Institute of Technology, [†]Corresponding Author

Most of existing work scale either agents or environments. However, **how to scale both of them together remains under-explored.**

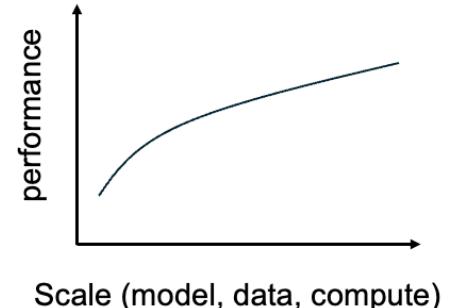
Word2World: Can LLM be implicit Text-based World Models?

Agent (LLM)

Next token predication
In-context Learning
Scaling law
....

Env (World Model)

Master 'worlds' by learning structured, predictive representations of environments.



Can we identify a similar path to guide the development of world model?

Text-based Environments as Bridge
(i.e., AlfWorld, SciWorld, WebShop, ...)

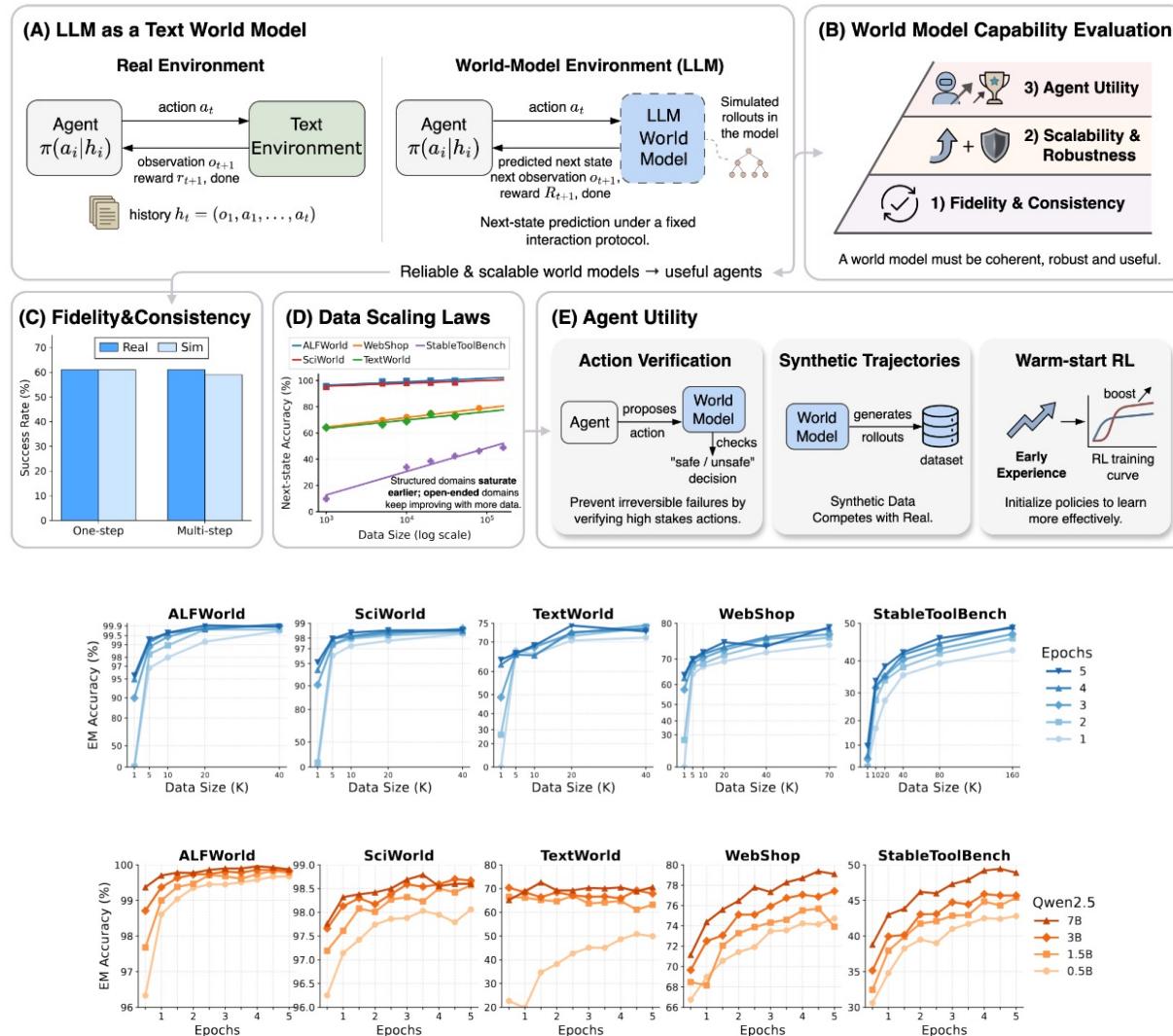


Agent (LLM)

Env (World Model)

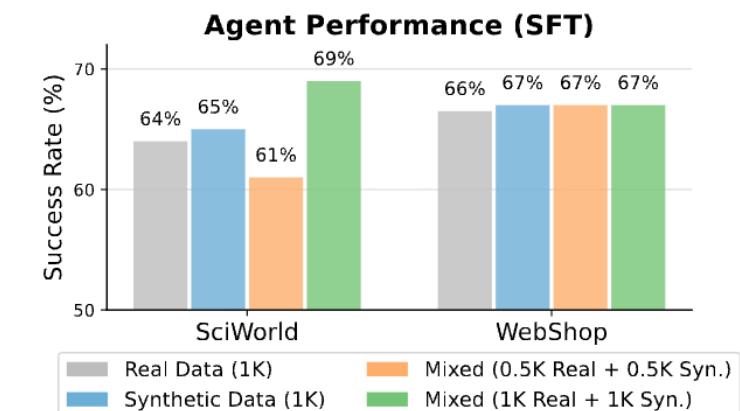
Next states prediction $(s, a) \rightarrow s'$
In-context Learning $(s, a, s', a') \rightarrow s''$
World model scaling law
....

Word2World: Can LLM be implicit Text-based World Models?

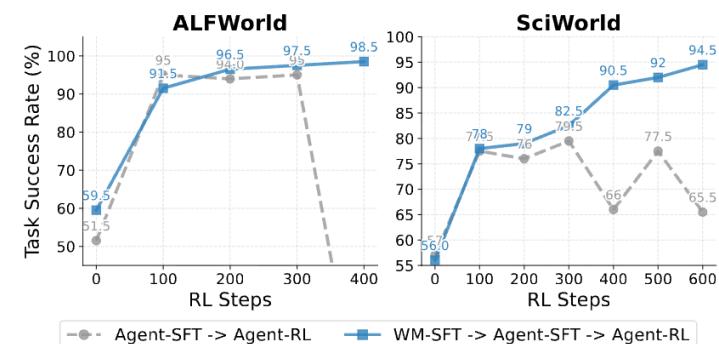


World model performance scales predictably with data and model size, mirroring LLMs. However, the nature of this scaling is tied to environment complexity.

Yes, simple fine-tuning unlocks near-perfect state prediction and long-horizon consistency



Data Synthesis



Warm-start RL

Future Direction 3: Scaling of Time

Welcome to the Era of Experience

David Silver, Richard S. Sutton*

Abstract

We stand on the threshold of a new era in artificial intelligence that promises to achieve an unprecedented level of ability. A new generation of agents will acquire superhuman capabilities by learning predominantly from experience. This note explores the key characteristics that will define this upcoming era.

Published in Transactions on Machine Learning Research (01/2026)

A Survey of Self-Evolving Agents

What, When, How, and Where to Evolve on the Path to Artificial Super Intelligence

Huan-ang Gao^{γ†}, Jiayi Geng^{α†}, Wenyue Hua^{ε†}, Mengkang Hu^{ω†}, Xinzhe Juan^{σμ†}, Hongzhang Liu^{ξ†}, Shilong Liu^{α†}, Jiahao Qiu^{α†}, Xuan Qi^{γ†}, Qihan Ren^{σ†}, Yiran Wu^{ρ†}, Hongru Wang^{κ†✉}, Han Xiao^{τ†}, Yuhang Zhou^{λ†}, Shaokun Zhang^{ρ†}, Jiayi Zhang^π, Jinyu Xiang, Yixiong Fang^θ, Qiwen Zhao^ζ, Dongrui Liu^σ, Cheng Qian^β, Zhenhailong Wang^β, Minda Hu^τ, Huazheng Wang^η, Qingyun Wu^ρ, Heng Ji^β, Mengdi Wang^{αδ✉}

^α Princeton University, ^δ Princeton AI Lab, ^γ Tsinghua University, ^θ Carnegie Mellon University, ^ξ University of Sydney, ^ε Shanghai Jiao Tong University, ^ρ Pennsylvania State University, ^μ University of Michigan, ^η Oregon State University, ^τ The Chinese University of Hong Kong, ^λ Fudan University, ^π The Hong Kong University of Science and Technology (Guangzhou), ^ω The University of Hong Kong, ^β University of California, Santa Barbara, ^ζ University of California San Diego, ^κ University of Edinburgh, ^β University of Illinois Urbana-Champaign

Github Repo: <https://github.com/CharlesQ9/Self-Evolving-Agents>

[†]Equal contribution and the order is determined alphabetically, [✉]Corresponding Author

Reviewed on OpenReview: <https://openreview.net/forum?id=CTr3bovS5F>

First comprehensive survey about self-evolving agent

The image is a promotional graphic for the 'First Workshop on Lifelong Agent: Learning-Aligning-Evolving' held in 2026. The top right corner features the text 'LifelongAgent-2026', '2026', '26th/Apr', 'Full day', and 'Rio de Janeiro'. The top left corner has a blue box with 'CALL FOR PAPERS'. The top center text reads 'First Workshop on Lifelong Agent: Learning-Aligning-Evolving' and 'An ICLR 2026 Workshop'. Below this, a subtitle states 'Building Agents That Endure: Adaptive Learning, Stable Alignment, Sustainable Growth.' The middle section is divided into two sections: '01 Speakers & Panelists' and '02 Organizers & Advisors'. Each section contains a grid of circular profile pictures of the speakers and organizers, with their names and affiliations listed below them. The background of the entire graphic is a dark blue with a subtle grid pattern.

First workshop focus on lifelong agent: learning, aligning and evolving (call for paper)

<https://lifelongagent.github.io/>

Alita, Alita-G, Agent-Distill,

ALITA: GENERALIST AGENT ENABLING SCALABLE AGENTIC REASONING WITH MINIMAL PREDEFINITION AND MAXIMAL SELF-EVOLUTION

Jiahao Qiu^{*1}, Xuan Qi^{*2}, Tongcheng Zhang^{*3}, Xinzhe Juan^{3,4}, Jiacheng Guo¹, Yifu Lu¹, Yimin Wang^{3,4}, Zixin Yao¹, Qihuan Ren⁶, Xun Jiang⁵, Xing Zhou⁵, Dongrui Liu³, Ling Yang¹, Yue Wu¹, Kaixuan Huang¹, Shilong Liu¹, Hongru Wang⁶, Mengdi Wang¹

¹AI Lab, Princeton University ²IIIS, Tsinghua University ³Shanghai Jiao Tong University
⁴University of Michigan ⁵Tianqiao and Chrissy Chen Institute ⁶The Chinese University of Hong Kong

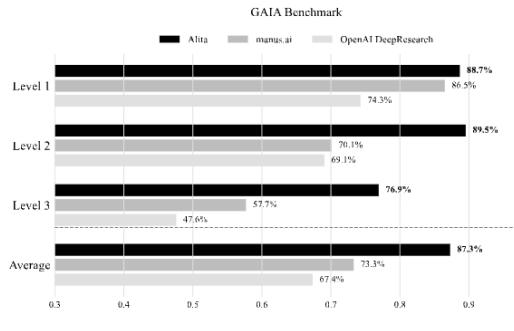


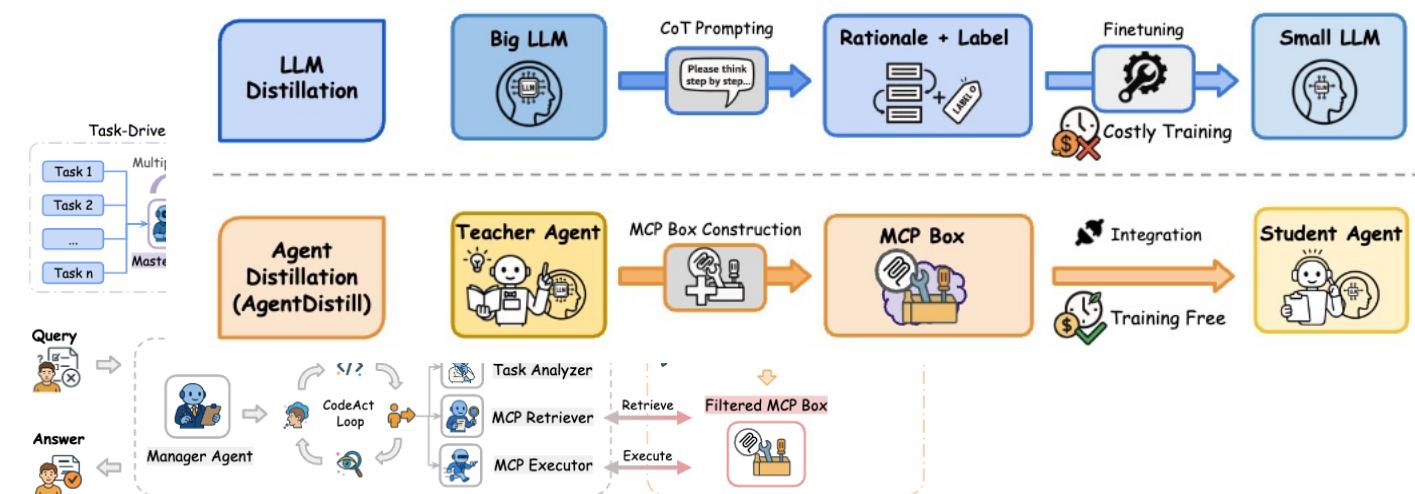
Figure 1: Performance of Alita, manus.ai, and OpenAI DeepResearch[1]

Alita can create

ALITA-G: SELF-EVOLVING GENERATIVE AGENT FOR AGENT GENERATION

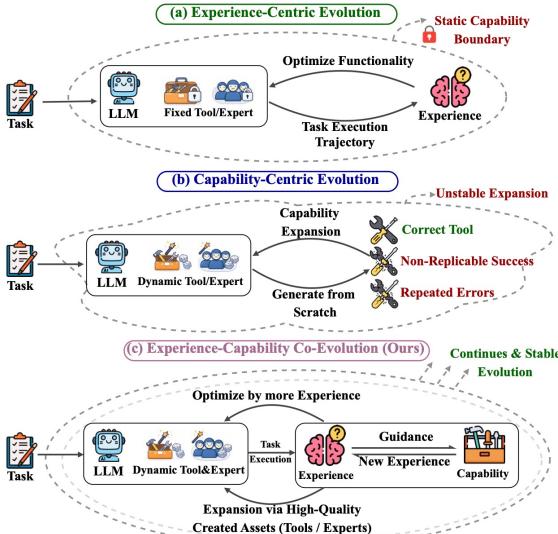
Jiahao Qiu^{*1}, Xuan Qi^{*2}, Hongru Wang^{*1,3}, Xinzhe Juan^{4,5}, Yimin Wang^{4,5}, Zelin Zhao⁶, Jiayi Geng¹, Jiacheng Guo¹, Peihang Li⁷, Jingzhe Shi², Shilong Liu^{1,8}, Mengdi Wang^{1,8}

¹Princeton University ²Tsinghua University ³The Chinese University of Hong Kong
⁴Shanghai Jiao Tong University ⁵University of Michigan ⁶ King's College London ⁷ Hong Kong University



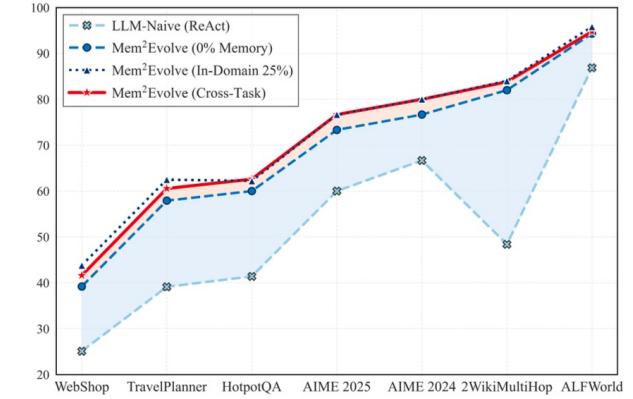
Alita-G can create specialized agent automatically during evolution.

Mem²Evo: Co-evolution of Agents and Envs



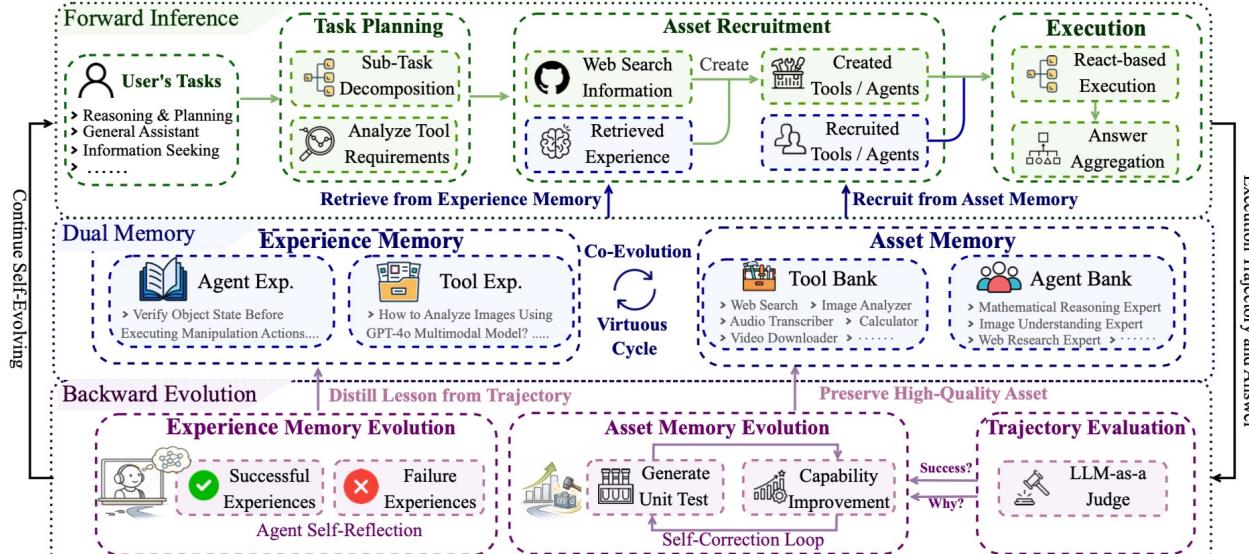
Framework	Experience Distillation			Capability Expansion			Exp.-Guided Creation
	Optimization	Persistence	Source	Tool Crea.	Agent Crea.	Tool/Agent	
DSPy (Khattab et al., 2023)	✓	✗	🌐	✗	✗	Static	—
DyLAN (Liu et al., 2023)	✓	✗	🌐	✗	✗	Static	—
ReasoningBank (Ouyang et al., 2025)	✗	✓	🌐	✗	✗	Static	—
AFlow (Zhang et al., 2025a)	✓	✗	🌐	✗	✗	Static	—
AgentSquare (Shang et al., 2025)	✓	✗	🌐	✗	✗	Static	—
Agentic Neural Networks (Ma et al., 2025)	✓	✗	🌐	✗	✗	Static	—
AgentVerse (Chen et al., 2023)	✓	✗	—	✗	✓	Dynamic	✗
AutoAgents (Chen et al., 2024)	✗	✗	—	✗	✓	Dynamic	✗
SwarmAgentic (Zhang et al., 2025b)	✓	✗	—	✗	✓	Dynamic	✗
Alita (Qiu et al., 2025)	✗	✗	—	✓	✗	Dynamic	✗
ToolMaker (Wöllein et al., 2025)	✗	✗	—	✓	✗	Dynamic	✗
Mem ² Evo (Ours)	✓	✓	🌐 + 🗂️	✓	✓	Dynamic	🌐 + 🗂️ + 🎯

Table 1: Comparison of self-evolving agent frameworks. **Optimization** indicates whether experience is used to optimize the agent (e.g., prompts). **Persistence** denotes whether experiences are persistently stored for future reuse. **Source**: 🗂️ agent task execution trajectory, 🗂️ tool creation process. **Tool Crea.** and **Agent Crea.** indicate whether the framework supports creation of tools and expert agents, respectively. **Tool/Agent** denotes whether the toolset and expert agents are static or dynamic. **Crea. Grounding** indicates the knowledge sources used for asset creation, 🎯 parametric knowledge, 🌐 web search information, 🎯 experience. **Exp.-Guided Creation** indicates whether new assets are created under the guidance of past experience. Details in the Appendix A.1 and A.2.



Cross-task evolution

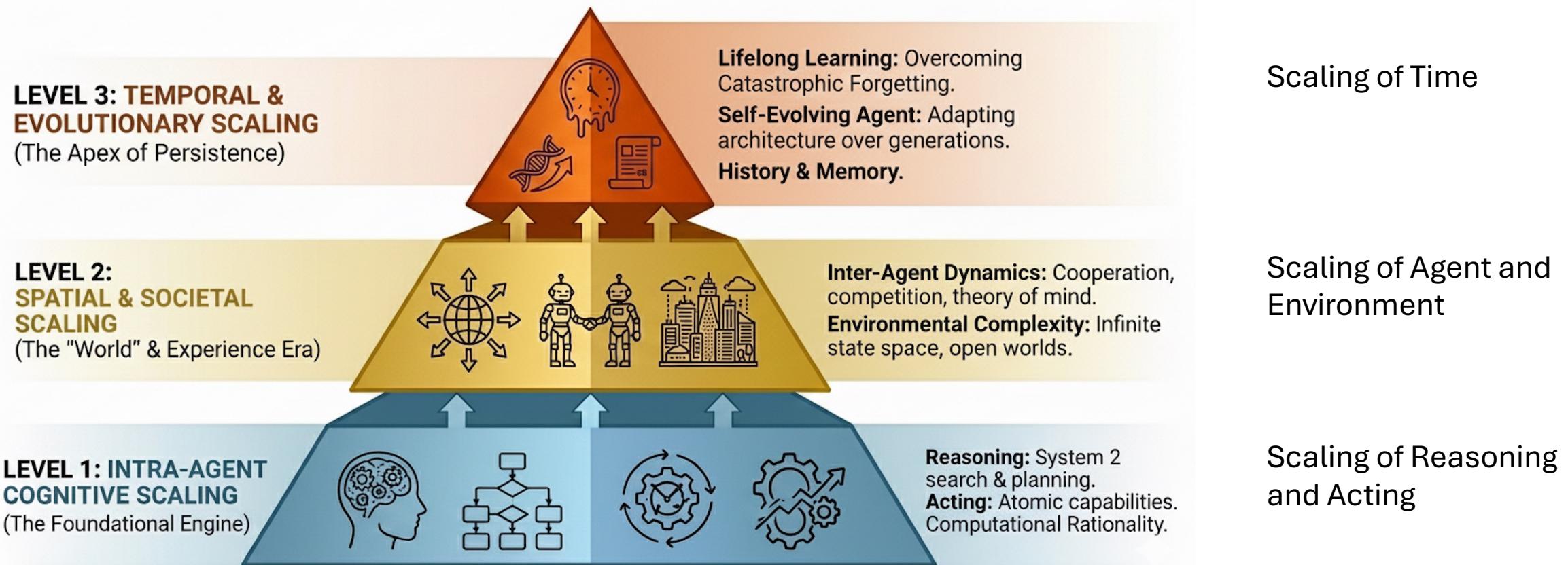
Three ways of evolutions



Mem²Evo Framework

Method	GAIA			Embodied		Multi-Hop QA			Math		Planning		Web Interaction		Avg.
	L1	L2	L3	Total	ALFWorld	HotpotQA	2Wiki	AIME24	AIME25	TravelPlanner	WebShop				
<i>Naive-Large Language Model</i>															
GPT-5-Chat (Direct)	16.98	12.79	7.69	12.49	83.58	50.40	81.80	60.00	46.67	38.68	22.31	49.49			
GPT-5-Chat (CoT)	24.53	17.44	11.54	17.84	83.58	47.40	74.40	66.67	56.67	39.51	27.49	51.71			
GPT-5-Chat (ReAct)	26.42	17.44	11.54	18.47	86.87	41.40	48.40	66.67	60.00	39.13	25.10	48.27			
OpenAI-DeepResearch ¹	74.29	69.06	47.60	67.36	—	—	—	—	—	—	—	—			
<i>Experience-Centric Evolving</i>															
DyLAN	24.53	19.78	11.54	18.62	91.20	52.00	65.00	46.67	43.33	43.15	36.40	49.55			
EvoAgent	22.64	19.78	11.54	17.99	92.50	54.40	75.00	66.67	43.33	49.20	37.80	54.61			
AFLOW	26.42	17.44	15.38	19.75	93.40	60.80	72.40	66.67	63.33	53.24	37.90	58.44			
DSPy	30.19	15.12	11.54	18.95	92.80	55.60	76.40	66.67	50.00	44.90	35.50	55.10			
<i>Capability-Centric Evolving</i>															
Alita	81.13	75.58	46.15	72.73	86.13	58.80	77.40	70.00	66.67	48.32	30.21	63.78			
AgentVerse	30.19	16.28	19.23	21.90	88.32	38.60	74.60	60.00	50.00	47.25	32.53	51.65			
AutoAgens	35.85	24.42	19.23	26.50	87.92	54.20	73.80	40.00	36.67	43.52	31.40	49.25			
SwarmAgentic	28.30	18.60	13.46	20.40	88.79	56.00	80.00	46.67	40.00	59.14	34.12	53.14			
<i>Ours</i>															
Mem ² Evo	88.68	82.56	57.69	76.31	94.31	60.80	82.00	76.70	73.33	59.25	39.20	70.24			

Rethinking *Three* Levels of Scaling Simultaneously



Lots of problem need to be defined and explored, welcome to join theory of agent!

Conclusion

- Agents are not merely an engineering problem; they are becoming increasingly scientific and theoretical, like scaling law of LLMs. We also need to find more theories of agent.
- Agent can be regarded as human. Lots of problem in human society also happens in agent society, i.e., internet/tool addiction.
- Every company should have an agent department instead of LLM department.
- Join theory of agent no matter what you do now, you are not just a researcher, but may next scientist, entrepreneur, and even billionaire.
- Safety and personalization still matters in practice. Aligning decision boundaries with both preference boundaries and knowledge boundaries is tricky.